
1
692 Normal Form for XML

A Normal Form for XML Documents

■ Overview of Relational Database Design Process
● Functional Dependencies and Normalization

➠ functional dependencies (FDs)
➠ redundancy and update anomalies
➠ third normal form (3NF) and Boyce-Codd normal form (BCNF)
➠ design algorithms for 3NF and BCNF

● Nested Normal Form for nested relations

■ Normal Form for XML docuemnts
● redundancy and update anomalies for XML docuemnts
● functional dependencies
● XNF: a normal form for XML documents
● a design algorithm for XNF

This section is based on the paper A Normal Form for XML Documents by M. Arenas
L. Libkin in Proceedings of ACM PODS02.

2
692 Normal Form for XML

A motivation Example for Normal Form Relations

course title student_id Name Major Grade

 391 Database 1234 Sarah CS 9

391 Database 4321 Tom CS 8

391 Database 2345 Bill CS 7

201 Program 1234 Sarah CS 6

201 Program 2345 Bill CS 5

3
692 Normal Form for XML

Motivation Example

StudentCourse = (course, title, student_id, name, major, grade)

Student = (student_id, name, major)
Course = (Course, title)
Registration = (course, student_id, grade)

4
692 Normal Form for XML

Functional Dependencies

t X t X t1 2 1[] []= ⇒ [Y] = t [Y]. 2

■ Functional dependencies (FDs)
Let R be a relation scheme, and X ⊆ R and Y ⊆ R be sets of attributes.

Then the functional dependency
X → Y

holds on R if in any legal relation r, for all pairs of tuples t1 and t2 in r

Example: student_id → name
course, student_id --> grade

5
692 Normal Form for XML

■ Minimizing redundancy
● Boyce-Codd normal form
● third normal form

Desirable Properties of Decomposition

6
692 Normal Form for XML

Boyce-Codd Normal Form

■ A relation scheme R is said to be in Boyce-Codd normal
form (BCNF) if for any non-trivial FD X → A which
holds in R, X is a key of R, that is, X → A holds in R.

● no partial redundancy
● no transitive redundancy

■ Let U be a set of attributes, F be a set of FDs, and D = {R1,
..., Rn} be a decomposition of U. Then D is said to be a
BCNF decomposition of U with respect to F if

● R is a join loss-less decomposition of U wrt F, and
● every relation scheme Ri in D is in BCNF wrt F.

7
692 Normal Form for XML

■ Example
Regist (Course#, Student#, Grade, Address, Phone)

is not in BCNF since
Student# → Address holds but Student # is not a key

Course (Course#, Prof, Office, Phone)
is not in BCNF because Prof → Office holds but Prof is not a key

But
{ (Course#, Student#, Grade), (Student#, Adress, Phone)} is a BCNF
decomposition of Regist.

{ (Course#, Porf), (Prof, Office, Phone)} is a BCNF decomposition of
Course.

8
692 Normal Form for XML

Algorithm for BCNF decomposition

Input U: a set of attributes
F: a set of FDs

Output D: a BCNF decomposition of U wrt F
Method

(1) D = {U};
(2) while there exists a relation scheme Q in D that is not in BCNF do

begin
find a nontrivial FD X → W that violates BCNF, i.e.,

X → W in F+ and XW ⊆ Q and X -/→ Q;
X* := { A | A is in (Q - X) and F |= X → A} ;
replace Q in D by two schemes (X ∪ X*) and (Q - X*)

end;

Note that it is NP-complete to determine whether a
relation scheme is in BCNF wrt F.

9
692 Normal Form for XML

NNF: A Normal Form for Nested Relations

■ Functional dependency and multi-valued
dependencies

■ Path Attributes
■ Minimizing redundancy and update anormalies

10
692 Normal Form for XML

Motivation Example for XML

<!DOCTYPE courses [
<!ELEMENT courses (course*) >
<!ELEMENT course(title, taken_by) >
<!ATTLIST course cno CDATA #REQUIRED>
<!ELEMENT title (#PCDATA)>
<!ELEMENT take_by(student*)>
<!ELEMENT student (name, grade)>
<!ATTLIST student sid CDATA #REQUIRED>
<!ELEMENT name (#PCDATA)>
<!ELEMENT grade (#PCDATA) >

] >

11
692 Normal Form for XML

courses

course course

@cno
391

title
database

Taken_by @cno
291

title
file

Taken_by

student
studentstudentstudent

@sid
1234

name
Sarah

grade
9

@sid
1234

name
Sarah

grade
6

@sid
4321

name
Bill

grade
8 @sid

4321
name
Bill

grade
7

12
692 Normal Form for XML

Motivation Example for XML
<!DOCTYPE courses [
<!ELEMENT courses (course*, student_info*) >
<!ELEMENT course(title, taken_by) >
<!ATTLIST course cno CDATA #REQUIRED>
<!ELEMENT title (#PCDATA)>
<!ELEMENT take_by(student*)>
<!ELEMENT student(grade) >
<!ELEMENT grade (#PCDATA) >
<!ATTLIST student sid CDATA #REQUIRED>
<!ELEMENT student_info(sid*, name) >
<!ELEMENT numberEMPTY>
<!ATTLIST number sid CDATA #REQUIRED>
<!ELEMENT name (#PCDATA)>

] >

13
692 Normal Form for XML

courses

course course

@cno
391

title
database

Taken_by @cno
291

Title
file

Taken_by

student
studentstudentstudent

@sid
1234

grade
9

@sid
1234

Grade
6

@sid
4321

grade
8 @sid

4321

student_info student_info

@sid name @sid name
1234 Sarah 4321 Bill

Grade
8

14
692 Normal Form for XML

Notations
■ Assume the following disjoint sets

● EL: the set of all element names
● Att: the set of all attribute names, starting with @
● Str: the set of all possible string valued attributes
● Vert: the set of node identifies

■ A DTD (Document Type Definition) is defined to be
● D = (E, A, P, R, r), where

➠ E is a finite subset of EL
➠ A is a finite subset of Att
➠ P is a mapping from E to element type definitions, defined as follows

✦ P(t) = EMPTY or
✦ P(t) ::= empty sequence | t’ in E | P(t) union P(t) | P(t) P(t) | P(t)*

➠ R is a mapping from E to the power set of A

● r is in E as the root element

15
692 Normal Form for XML

■ Given a DTD D = (E, A, P, R, t), a string w = w1,…, wn is
a PATH in D if

● w1 = r,
● wi is in the alphabet of P(wi-1), for each i in [2, n-1], and
● wn is in the alphabet of P(wn-1) or wn = @l for some @l in R(wn-1)

■ Assume w is a path in D, length(w) is defined as n, and
last(w) as wn.

■ Given a DTD D,
● Paths(D) stands for the set of all paths in D,
● Epaths(D) stands for the set of all paths that ends with an element

type

■ DTD is recursive if Paths(D) is infinite.

16
692 Normal Form for XML

Example <!DOCTYPE courses [
<!ELEMENT courses (course*) >
<!ELEMENT course(title, taken_by) >
<!ATTLIST course cno CDATA #REQUIRED>
<!ELEMENT title (#PCDATA)>
<!ELEMENT take_by(student*)>
<!ATTLIST student sid CDATA #REQUIRED>
<!ELEMENT name (#PCDATA)>
<!ELEMENT grade (#PCDATA) >

] >

The followings are paths in D
courses,
courses.course
courses.course.@cno
courses.course.title
courses.course.title.S
courses.course.taken_by
courses.course.taken_by.student

courses.course.taken_by.student.@sid
courses.course.taken_by.student.name
courses.course.taken_by.student.name.S
courses.course.taken_by.student.grade
courses.course.taken_by.student.grade.S

17
692 Normal Form for XML

■ An XML tree T is defined to be a tree (V, lab, ele, att, root),
where

● V is a finite subset of Vert (nodes)
● lab: V => EL
● ele: V => Str U V*
● att is a partial function V x Att => Str
● root in V is called the root of T

■ Given an XML tree T, a string w1 … wn, where with wi, I<
n-1, in EL, and wn is in the union of El, Att, and {S}.

● The string is a path in T if tehre are vertices v1, …, vn-1 in V such
that

➠ v1 = root, vi+1 is a child of vi for I <= n-1, lab(vi) = wi for I <= n-1
➠ if wn in El, then there is a child vn ofv n-1 such that lab(vn) = wn.
➠ If wn = @l then att(vn-1, @l) is defined
➠ if wn = S (#PCDATA) then vn-1 has a child in Str.

18
692 Normal Form for XML

■ T is compatible with D if and only if
● paths(T) is a subset of paths(D)

19
692 Normal Form for XML

Tree Tuples

■ XML trees are defined as sets of tree tuples
■ Given a DTD D = (E, A, P, R, r), a tree tuple t in D is

defined as a function from paths(D) to Vert U Str U {null}
such that

● For p in EPaths(D), t(p) is in Vert + {null} , and t(r) =/= {null}
● For p in paths(D) = EPahths(D), t(p) is in Str + {null}.
● If t(p1) = t(p2) and t(p1) is in Vert, then p1 = p2
● If t(p1) = null, and p1 is a prefeix of p1, then t(p2) = null.
● { p in paths(D) | t(p) =/= null } is finite.

■ T(D)is defined to be the set of all tree tuples in D.

20
692 Normal Form for XML

Example <!DOCTYPE courses [
<!ELEMENT courses (course*) >
<!ELEMENT course(title, taken_by) >
<!ATTLIST course cno CDATA #REQUIRED>
<!ELEMENT title (#PCDATA)>
<!ELEMENT take_by(student*)>
<!ATTLIST student sid CDATA #REQUIRED>
<!ELEMENT name (#PCDATA)>
<!ELEMENT grade (#PCDATA) >

] >

The followings are paths in D
t(courses) = v0
t(courses.course) = v1
t(courses.course.@cno) = 391
t(courses.course.title) = v2
t(courses.course.title.S = database
t(courses.course.taken_by= v3
t(courses.course.take_by.student) = v4

t(courses.course.taken_by.student.@sid) =1234
t(courses.course.taken_by.student.name) = v5
t(courses.course.taken_by.student.name.S) = Sarah
t(courses.course.taken_by.student.grade) = v6
t(courses.course.taken_by.student.grade.S) = 9

21
692 Normal Form for XML

The XML tree for this one tree tuple
v0

v1

v2 v3

v4

v5 v6

391

database

1234

Sarah 9

22
692 Normal Form for XML

■ Important Results:
● Given a DTD D and an XML tree T such that T

conforms with D. Then T can be represented by
a set of tree tuples, if we consider it as an
unordered tree.

23
692 Normal Form for XML

Functional Dependencies

■ Let D be a DTD, S1 and S2 are finite non-empty subsets of
paths(D).

● A functional dependency FD over D is an expression of the form

S1 --> S2
● An XML tree T satisfies S1 --> S2 if for every pair of tree tuples

t1, t2 in tuples(T),

➠t1.S1 = t2.S2 and t.S1 =/= null implies t1.S2 = t2.S2.

24
692 Normal Form for XML

Example
<!DOCTYPE courses [

<!ELEMENT courses (course*) >
<!ELEMENT course(title, taken_by) >
<!ATTLIST course cno CDATA #REQUIRED>
<!ELEMENT title (#PCDATA)>
<!ELEMENT take_by(student*)>
<!ATTLIST student sid CDATA #REQUIRED>
<!ELEMENT name (#PCDATA)>
<!ELEMENT grade (#PCDATA) >

] >The followings are paths in D
courses,
courses.course
courses.course.@cno
courses.course.title
courses.course.title.S
courses.course.taken_by
courses.course.taken_by.student

courses.course.taken_by.student.@sid
courses.course.taken_by.student.name
courses.course.taken_by.student.name.S
courses.course.taken_by.student.grade
courses.course.taken_by.student.grade.S

25
692 Normal Form for XML

Example: Paths(D)
courses

course

title Taken_by

student

name grade

@cno

S

@sid

S S

courses,
courses.course
courses.course.@cno
courses.course.title
courses.course.title.S
courses.course.taken_by
courses.course.taken_by.student
courses.course.taken_by.student.@sid
courses.course.taken_by.student.name
courses.course.taken_by.student.name.S
courses.course.taken_by.student.grade
courses.course.taken_by.student.grade.S

26
692 Normal Form for XML

Example

FD1:

courses.course.@cno --> courses.course

courses

course

title Taken_by

student

name grade

@cno

S

@sid

S S

Constraint:

cno is a key of course

27
692 Normal Form for XML

Consider a sample XML Tree T1
courses

course1 course2

391 title1 Taken_by1 291 title2
file

Taken_by2

student1 student4studen3tstudent2

1234 name1 grade1 1234 name3 grade34321
name2

grade2
4321

name4
grade4

database

Sarah 9 Bill Sarah Bill
8

7 6

28
692 Normal Form for XML

Cno Title SID Name Grade

391 database 1234 Sarah 9

391 database 4321 Bill 8

291 file 1234 Sarah 7

291 file 1234 Bill 6

The corresponding flat table for T1

29
692 Normal Form for XML

courses

Cours1

title1 Taken_by1

student1

name1 grade1

c391

database

1234

Sarah 9

courses

course1

title1 Taken_by1

student2

name2 grade2

c391

database

4321

Bill 8

The following are the only two tree typles with cno = c391 in T1

30
692 Normal Form for XML

Consider another XML Tree T2
courses

course1 course2

391 title1 Taken_by1 391 title2
file

Taken_by2

student1 student4studen3tstudent2

1234 name1 grade1 1234 name3 grade34321
name2

grade2
4321

name4
grade4

database

Sarah 9 Bill Sarah Bill
8

7 6

31
692 Normal Form for XML

Cno Title SID Name Grade

391 database 1234 Sarah 9

391 database 4321 Bill 8

391 file 1234 Sarah 7

391 file 1234 Bill 6

The corresponding flat table for T2

32
692 Normal Form for XML

courses

course1

title1 Taken_by1

student1

name1 grade1

c391

database

1234

Sarah 9

courses

course2

title2 Taken_by2

student4

name4 grade4

c391

file

4321

Bill 6

The following are two tree typles with cno = c391 in T2

33
692 Normal Form for XML

■ Observation
● Both T1 and T2 conform to the DTD
● T1 satisfies the FD

➠courses.course.@cno --> courses.course
● T2 does not satisfy the above FD

34
692 Normal Form for XML

Example

Constraint:
two distinct students of the same course
cannot have the same sid

courses

course

title Taken_by

student

name grade

@cno

S

@sid

S S

FD2:
{ courses.course, courses.course.taken_by.student.@sid}

--> courses.course.taken_by.student

35
692 Normal Form for XML

Example

Constraint:
two students with the same sid must have
the same name

courses

course

title Taken_by

student

name grade

@cno

S

@sid

S S

FD3:
courses.course.taken_by.student.@sid -->

courses.course.taken_by.student.name.S

36
692 Normal Form for XML

XNF: An XML Normal Form

■ Given a DTD, and a set F of FDs, (D, F) is in
XML normal form (XNF) if and only if for every
nontrivial FD of the form S --> p.@l or S -->
p.S, it is the case that S--> p is implied by F.

■ Intuition
● For every set values of the elements in S, we can find

only one value of p.@l. Thus, we need to store the value
only one.

37
692 Normal Form for XML

Consider the following example again
courses

course1 course2

391 title1 Taken_by1 291 title2
file

Taken_by2

student1 student4studen3tstudent2

1234 name1 grade1 1234 name3 grade34321
name2

grade2
4321

name4
grade4

database

Sarah 9 Bill Sarah Bill
8

7 6

38
692 Normal Form for XML

We have FD3:
courses.course.taken_by.student.@sid -->

courses.course.taken_by.student.name.S

But the following does not held:
courses.course.taken_by.student.@sid -->
courses.course.taken_by.student.name

This implies that the student name for a given sid,
the document may have multiple copies of student
name.

39
692 Normal Form for XML

Relationships with other normal forms

■ Assume a standard coding between tables and XML
documents
● A relation schema in in BCNF if and only if its

XML counter part is in XNF
■ Assume a standard nesting operations and coding

● A nested relation is in NNF if and only if its
XML representation is in XNF.

40
692 Normal Form for XML

Normalization Algorithm

■ Two basic operations
● Moving attributes
● Creating new element types

■ Given a DTD D and a set F of FDs
● If (D, F) is in XNF, return
● Otherwise find an anomalous FD and use the two basic operations to

modify D to eliminate the anomalous FD,
● Continue the above steps until (D, F) is in XNF.

■ The normalization algorithm is efficient and join-lossless

