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Abstract
Suppose you do per-node labeling in graphical model using k-step belief

propagation. Can we set parameters in the model to minimize number of
labeling errors on training data? Number of errors is hard tominimize, but
instead we can minimize a smooth upper bound on the number of errors, like
pointwise log-loss

Setting for structured binary labeling

Suppose you are given a set of(xi,yi) pairs wherexi ∈ {1,−1}m, yi ∈ F and would
like to learn a mappingν :F→∪m{1,−1}m from data to minimize some lossL on
this set. More concretely, you learn a functionp :F→ [0;1]m and label component
s of datapointi as 1 ifps(yi)> 1/2 and−1 otherwise. The number of classification
errors can then be written as follows

J = ∑
i

∑
s

step(xi,t(1/2− ps(yi))) (1)

Where step(x) returns 1 if x is positive, 0 otherwise. Since this loss is hard to
work with, replace it with log-loss as follows

J = ∑
i

∑
s

logloss(xi,s, ps(yi)) (2)

Where logloss is defined as follows

logloss(x,y) =

{

− log2(y) if x = 1

− log2(1− y) if x =−1
(3)
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Figure 1: 0-1 loss and log-loss

This loss is smooth, and it forms an upper bound on the 0-1 loss, Figure 1.
Minimizing equation 2 minimizes an upper bound on the numberof classification
errors.

It is more convenient to work with functions that output log-odds instead of
probabilities. Define transformation between log-odds andprobabilities as fol-
lows.

o =
1
2

log(
p

1− p
) p =

exp(o)
exp(o)+exp(−o)

(4)

Let o(yi) output a vector of log-odds, then the objective function in equation 2
becomes the following

J = ∑
i

∑
s

logit(xi,sos(yi)) (5)

Where logit (known as logit link function or the logistic loss) is logit(x) =
log(1+exp(−2x))

Supposeo(y) is defined in terms of parameter vectorw. We can minimize 5
by doing gradient descent in space ofw, wherek’th component of the gradient is
defined as

∂J
∂wk

= ∑
i

∑
s

xi,s
∂logit

∂x
∂os(yi)

∂wk
(6)
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Suppose weightsw are parameters defining an undirected graphical model
UG andos(yi) represents log-odds of nodes being positive obtained by running

loopy belief propagation on UG. Next two sections show how tofind ∂os(yi)
∂wk

in this
setting.

Random Fields

Supposex ∈ {1,−1}m. Take graph G with nodes N and edges E, probability den-
sity over x’s is positive and decomposes according to G. Thenit can be written as
follows

P(x) ∝ exp(∑
s∈N

hs(xs)+ ∑
st∈E

Jst(xs,xt)) (7)

Wherehs andJst are some potential functions. We can write every density in the
form above in the following form

P(x) ∝ exp(∑
s∈N

θsxs + ∑
st∈E

θstxsxt) (8)

Let C(t) indicate the set of children of nodet, C(t)\s is children with nodes
removed. When graphG is a tree following equations define log-odds of the event
“xs is positive”.

os = ∑
t∈C(s)

mst +θs (9)

mst = fst( ∑
u∈C(t)\s

mtu +θt) (10)

fst(x) = arctanh(tanhθst tanhx) (11)

Top-down approach to this problem would be to solve this set of equations
directly. To define the bottom up approach, letm ∈ R

2|E| and define the mapping
F : R2|E| → R

2|E| as follows

Fst(m) = fst( ∑
u∈C(t)\s

mtu +θt) (12)

Let Fk = F ◦F ◦ . . . ◦F denote k-fold composition ofF. Log-odds ofxs can
now be written as follows
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os = ∑
t∈C(s)

Fk
st(0)+θs (13)

k ≥ diam(G) (14)

CRF for multi-class object layout

We use the density form from 8 but nowθ’s are functions of our observed feature
variabley.

Let y be a set of bounding boxes with information, where each bounding box
has dimensions, detector used to produce that bounding box and score of that
detector. Letcs be the detector responsible for bounding box s (a number between
1 and 20),ls the score of local detector for boxs, rst spatial relationship between
boxes s and t (number between 1 and 7, see lines 163-209 in extract feat TP.m
from multiobjectcontext package). Then we define potential functions as follows

θs(y) = wcs,1ls +wcs,0 (15)

θst(y) = wcs,ct ,rst (16)

We now have introducedw’s and can finally compute the gradient with respect
to w from equation 6. Definition ofF is from 12. LetMk indicate result of belief
propagation after k steps, ie

Mk
st = ∑

u∈C(t)\s

Fk
tu +θt(yi) (17)

Let wk indicate a local potential offset weight, ie corresponds tows,0 for some
s in 16. To find the derivative, apply chain rule to definition ofF from 12, f from
11 andθs from 16 to get the following
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∂os

∂wk
=

∂θs

∂wk
+ ∑

t∈C(s)
∑

j

∂Fk
st

∂θ j

∂θ j

∂wk
(18)

∂Fk
st

∂θk
=

∂ fst(Mk
st)

∂x ∑
u∈C(t)\s

∂Fk−1
tu

∂θk
+1(t = k) (19)

∂ fst

∂x
=

sinh(2θst(y))
cosh(2θst)+cosh(x)

(20)

∂θs

∂wk
= 1(cs = k) (21)

FunctionI refers to indicator function, ie 1 if the argument is true, 0 otherwise.
Derivatives with respect to other weights (ws,1,wst) are derived similarly.

Notice that to you can compute value in equation 20 by usingk back-substitutions,
so this gives an algorithm similar to k-step belief propagation.

Substitute the value from 18 back into 6 to get the gradient ofthe objective
function.

One step BP and logistic regression

The objective function we minimize in 5 is the same as the objective function
minimized for logistic regression. The family of functionswe are minimizing over
is different, but it becomes the same in a special case.

Suppose our local detector scoreslt are binary valued and we run belief prop-
agation for one step only. Expand definition ofo from 14 withk = 1 and we get
following

os = ∑
t∈C(s)

fst(θt(lt))+θs(ls) (22)

Since lt are binary valued, andfst ,θs have sufficient degrees to freedom to
match any function at values 0 and 1, the space of functions weare considering is
the same as

os = ∑
t∈C(s)

wst lt +wsls +ws,0 (23)

This is the same as the family of classifiers we consider when we model log-
odds of nodet with logistic regression conditioned on detector values att and
neighbours oft
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Notation

There’s some ambiguity in notation, to resolve consider that s, t,u are always in-
dexing nodes in our graphical model,j,k index components of weight vectorw, i
indexes elements of our training set.x or xi couild refers to a labeling (binary val-
ued vector) as in 8, or to just a regular real valued variable 2. Likewise, depending
on context,y either means a real valued variable (in 2) or a variable encoding
observed feature information.

Many quantities are written as functions without arguments(ie ∂θ
∂w ) but are

actually evaluated at particular point, I drop the argumentwhen you can figure it
out from context. For instanceFk really meansFk(0) (belief propagation iterated
k steps starting with 0 messages). For derivatives I drop theargument when it’s the
same as argument of original function (ie, f(x) becomes f’ after differentiation).

Related work

When marginal likelihoods can be evaluated exactly, objective function of the
form 2 for CRF is known as “pointwise log-loss”. It’s been used before for POS
tagging. Also, idea of fitting parameters to make loopy belief propagation produce
accurate estimates was suggested by Justin Domke in his PhD thesis, although
there he suggests using automatic differentiation tools tocompute the gradient.
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