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Abstract

Suppose you do per-node labeling in graphical model usisigg-belief
propagation. Can we set parameters in the model to minimineber of
labeling errors on training data? Number of errors is hamhitiimize, but
instead we can minimize a smooth upper bound on the numberao§elike
pointwise log-loss

Setting for structured binary labeling

Suppose you are given a set(&f, y;) pairs where € {1, —1}™,y; € F and would
like to learn a mapping : F — Un{1, —1}™ from data to minimize some logson
this set. More concretely, you learn a functipnd — [0; )™ and label component
sof datapoini as 1 ifps(yi) > 1/2 and—1 otherwise. The number of classification
errors can then be written as follows

1= Y stertxa(1/2 - ps(y) (1)

Where step(x) returns 1 if x is positive, 0 otherwise. Sirgs loss is hard to
work with, replace it with log-loss as follows

J=3 5 loglosgxs, Ps(¥i)) 2)
| S
Where logloss is defined as follows
loglosgx,y) ={ log,(y) if X = 1 -
—log,(1—y)if x=—-1
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Figure 1: 0-1 loss and log-loss

This loss is smooth, and it forms an upper bound on the 0-1 kigsire 1.
Minimizing equation 2 minimizes an upper bound on the nunadbetassification
errors.

It is more convenient to work with functions that output lodes instead of
probabilities. Define transformation between log-odds prababilities as fol-
lows.

p _ exp(o)
1— p) P= exp(0) + exp(—0) “)

Let o(y;) output a vector of log-odds, then the objective functiongonagion 2
becomes the following

1 Iog(

= Z Zl‘)g't Xi s0s(Yi)) (5)

Where logit (known as logit link function or the logistic Bsis logitx) =
log(1+ exp(—2x))

Suppose(y) is defined in terms of parameter vecter We can minimize 5
by doing gradient descent in spacemfwherek’th component of the gradient is
defined as

odlogit dos(V;)
awk zz's oX  Owgk (6)




Suppose weightsv are parameters defining an undirected graphical model
UG andos(y;) represents log-odds of nodéeing positive obtained by running
Ioopy belief propagation on UG. Next two sections show hoﬁma";—v(vzi) in this
setting.

Random Fields

Suppos« € {1,—1}™. Take graph G with nodes N and edges E, probability den-
sity over x’s is positive and decomposes according to G. Thean be written as
follows

P(x) O exp( Zw hs(Xs) + ZEJg (Xs, %)) (7)
sc de

Wherehs andJg are some potential functions. We can write every densithén t
form above in the following form

P(x) O exp( ZV BsXs+ ZE B XsX) (8)
Sc de

Let C(t) indicate the set of children of nodeC(t)\sis children with nodes
removed. When grapB is a tree following equations define log-odds of the event
“Xs IS positive”.

teC(s)
my = fa( ) mMmu+86) (10)
ueC(t)\s
f¢(x) = arctantitanhBg tanhx) (11)

Top-down approach to this problem would be to solve this $&tgoations
directly. To define the bottom up approach, et R2El and define the mapping
F : R2El — R2El a5 follows

Fa(m) = fg( Z My + 6t) (12)
ueC(t)\s

Let FK=F oF o...oF denote k-fold composition df. Log-odds ofxs can
now be written as follows



o5 = 5 FX(0) + 65 (13)
teC(s)
k > diamG) (14)

CRF for multi-class object layout

We use the density form from 8 but nd@s are functions of our observed feature
variabley.

Lety be a set of bounding boxes with information, where each bioigriobx
has dimensions, detector used to produce that bounding taseore of that
detector. Lets be the detector responsible for bounding box s (a numberdagtw
1 and 20)Js the score of local detector for baxrg spatial relationship between
boxes s and t (number between 1 and 7, see lines 163-209 aceidat TP.m
from multiobjectcontext package). Then we define potential functions asvsl|

es(y) — WC371|S+WCS7O (15)
B2(Y) = Weerg (16)

We now have introduced’s and can finally compute the gradient with respect
to w from equation 6. Definition oF is from 12. LetMX indicate result of belief
propagation after k steps, ie

ME= Y R§+6u(v) (17)
ueC(t)\s
Let wy indicate a local potential offset weight, ie correspondwdg for some
sin 16. To find the derivative, apply chain rule to definitionFofrom 12, f from
11 andbs from 16 to get the following
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aWk aWk teC(s); ae, aWk ( )
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Fa _ FalMy) AT (19)

aek 0X uell)\s aek

0x  cosh20g) +coshx)

00s

we 1(cs=Kk) (21)

Functionl refers to indicator function, ie 1 if the argument is true@sswise.
Derivatives with respect to other weightss(, ws) are derived similarly.

Notice that to you can compute value in equation 20 by ukimack-substitutions,
so this gives an algorithm similar to k-step belief propagat

Substitute the value from 18 back into 6 to get the gradierithefobjective
function.

Onestep BP and logistic regression

The objective function we minimize in 5 is the same as the abje function
minimized for logistic regression. The family of functionws are minimizing over
is different, but it becomes the same in a special case.

Suppose our local detector scoteare binary valued and we run belief prop-
agation for one step only. Expand definitionamfrom 14 withk = 1 and we get
following

0s = Z f& (6t (1t)) + Os(ls) (22)
teC(s)

Sincel; are binary valued, and, 65 have sufficient degrees to freedom to
match any function at values 0 and 1, the space of functiorsreveonsidering is
the same as

0s = Z Wetlt -+ Wsls+Ws (23)
teC(s)

This is the same as the family of classifiers we consider whemwdel log-
odds of node with logistic regression conditioned on detector values and
neighbours of



Notation

There’s some ambiguity in notation, to resolve considet $htau are always in-
dexing nodes in our graphical modelk index components of weight vecta i
indexes elements of our training sebr x; couild refers to a labeling (binary val-
ued vector) as in 8, or to just a regular real valued variablek2wise, depending
on context,y either means a real valued variable (in 2) or a variable @ngod
observed feature information.

Many quantities are written as functions without argume{'rﬁsgvev) but are
actually evaluated at particular point, | drop the argunveémén you can figure it
out from context. For instandeX really meang=¥(0) (belief propagation iterated
k steps starting with 0 messages). For derivatives | dropriipement when it’s the
same as argument of original function (ie, f(x) becomesterdifferentiation).

Related wor k

When marginal likelihoods can be evaluated exactly, objedunction of the

form 2 for CRF is known as “pointwise log-loss”. It's been ddeefore for POS
tagging. Also, idea of fitting parameters to make loopy ligifepagation produce
accurate estimates was suggested by Justin Domke in his i t although
there he suggests using automatic differentiation toot®topute the gradient.



