
Chapter 1

LINEAR EQUATIONS

1.1 Introduction to linear equations

A linear equation in n unknowns x1, x2, · · · , xn is an equation of the form

a1x1 + a2x2 + · · ·+ anxn = b,

where a1, a2, . . . , an, b are given real numbers.
For example, with x and y instead of x1 and x2, the linear equation

2x+ 3y = 6 describes the line passing through the points (3, 0) and (0, 2).
Similarly, with x, y and z instead of x1, x2 and x3, the linear equa-

tion 2x + 3y + 4z = 12 describes the plane passing through the points
(6, 0, 0), (0, 4, 0), (0, 0, 3).

A system of m linear equations in n unknowns x1, x2, · · · , xn is a family
of linear equations

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
...

am1x1 + am2x2 + · · ·+ amnxn = bm.

We wish to determine if such a system has a solution, that is to find
out if there exist numbers x1, x2, · · · , xn which satisfy each of the equations
simultaneously. We say that the system is consistent if it has a solution.
Otherwise the system is called inconsistent.
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Note that the above system can be written concisely as

n∑
j=1

aijxj = bi, i = 1, 2, · · · ,m.

The matrix 
a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
am1 am2 · · · amn


is called the coefficient matrix of the system, while the matrix

a11 a12 · · · a1n b1
a21 a22 · · · a2n b2
...

...
...

am1 am2 · · · amn bm


is called the augmented matrix of the system.

Geometrically, solving a system of linear equations in two (or three)
unknowns is equivalent to determining whether or not a family of lines (or
planes) has a common point of intersection.

EXAMPLE 1.1.1 Solve the equation

2x+ 3y = 6.

Solution. The equation 2x + 3y = 6 is equivalent to 2x = 6 − 3y or
x = 3− 3

2y, where y is arbitrary. So there are infinitely many solutions.

EXAMPLE 1.1.2 Solve the system

x+ y + z = 1
x− y + z = 0.

Solution. We subtract the second equation from the first, to get 2y = 1
and y = 1

2 . Then x = y − z = 1
2 − z, where z is arbitrary. Again there are

infinitely many solutions.

EXAMPLE 1.1.3 Find a polynomial of the form y = a0+a1x+a2x
2+a3x

3

which passes through the points (−3, −2), (−1, 2), (1, 5), (2, 1).
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Solution. When x has the values −3, −1, 1, 2, then y takes corresponding
values −2, 2, 5, 1 and we get four equations in the unknowns a0, a1, a2, a3:

a0 − 3a1 + 9a2 − 27a3 = −2
a0 − a1 + a2 − a3 = 2
a0 + a1 + a2 + a3 = 5

a0 + 2a1 + 4a2 + 8a3 = 1.

This system has the unique solution a0 = 93/20, a1 = 221/120, a2 =
−23/20,
a3 = −41/120. So the required polynomial is

y =
93
20

+
221
120

x− 23
20
x2 − 41

120
x3.

In [26, pages 33–35] there are examples of systems of linear equations
which arise from simple electrical networks using Kirchhoff’s laws for elec-
trical circuits.

Solving a system consisting of a single linear equation is easy. However if
we are dealing with two or more equations, it is desirable to have a systematic
method of determining if the system is consistent and to find all solutions.

Instead of restricting ourselves to linear equations with rational or real
coefficients, our theory goes over to the more general case where the coef-
ficients belong to an arbitrary field. A field F is a set F which possesses
operations of addition and multiplication which satisfy the familiar rules of
rational arithmetic. There are ten basic properties that a field must have:

THE FIELD AXIOMS.

1. (a+ b) + c = a+ (b+ c) for all a, b, c in F ;

2. (ab)c = a(bc) for all a, b, c in F ;

3. a+ b = b+ a for all a, b in F ;

4. ab = ba for all a, b in F ;

5. there exists an element 0 in F such that 0 + a = a for all a in F ;

6. there exists an element 1 in F such that 1a = a for all a in F ;
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7. to every a in F , there corresponds an additive inverse −a in F , satis-
fying

a+ (−a) = 0;

8. to every non–zero a in F , there corresponds a multiplicative inverse
a−1 in F , satisfying

aa−1 = 1;

9. a(b+ c) = ab+ ac for all a, b, c in F ;

10. 0 6= 1.

With standard definitions such as a − b = a + (−b) and
a

b
= ab−1 for

b 6= 0, we have the following familiar rules:

−(a+ b) = (−a) + (−b), (ab)−1 = a−1b−1;
−(−a) = a, (a−1)−1 = a;

−(a− b) = b− a, (
a

b
)−1 =

b

a
;

a

b
+
c

d
=

ad+ bc

bd
;

a

b

c

d
=

ac

bd
;

ab

ac
=

b

c
,

a(
b
c

) =
ac

b
;

−(ab) = (−a)b = a(−b);

−
(a
b

)
=
−a
b

=
a

−b
;

0a = 0;
(−a)−1 = −(a−1).

Fields which have only finitely many elements are of great interest in
many parts of mathematics and its applications, for example to coding the-
ory. It is easy to construct fields containing exactly p elements, where p is
a prime number. First we must explain the idea of modular addition and
modular multiplication. If a is an integer, we define a (mod p) to be the
least remainder on dividing a by p: That is, if a = bp+ r, where b and r are
integers and 0 ≤ r < p, then a (mod p) = r.

For example, −1 (mod 2) = 1, 3 (mod 3) = 0, 5 (mod 3) = 2.
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Then addition and multiplication mod p are defined by

a⊕ b = (a+ b) (mod p)
a⊗ b = (ab) (mod p).

For example, with p = 7, we have 3 ⊕ 4 = 7 (mod 7) = 0 and 3 ⊗ 5 =
15 (mod 7) = 1. Here are the complete addition and multiplication tables
mod 7:

⊕ 0 1 2 3 4 5 6
0 0 1 2 3 4 5 6
1 1 2 3 4 5 6 0
2 2 3 4 5 6 0 1
3 3 4 5 6 0 1 2
4 4 5 6 0 1 2 3
5 5 6 0 1 2 3 4
6 6 0 1 2 3 4 5

⊗ 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6
2 0 2 4 6 1 3 5
3 0 3 6 2 5 1 4
4 0 4 1 5 2 6 3
5 0 5 3 1 6 4 2
6 0 6 5 4 3 2 1

If we now let Zp = {0, 1, . . . , p− 1}, then it can be proved that Zp forms
a field under the operations of modular addition and multiplication mod p.
For example, the additive inverse of 3 in Z7 is 4, so we write −3 = 4 when
calculating in Z7. Also the multiplicative inverse of 3 in Z7 is 5 , so we write
3−1 = 5 when calculating in Z7.

In practice, we write a⊕b and a⊗b as a+b and ab or a×b when dealing
with linear equations over Zp.

The simplest field is Z2, which consists of two elements 0, 1 with addition
satisfying 1+1 = 0. So in Z2, −1 = 1 and the arithmetic involved in solving
equations over Z2 is very simple.

EXAMPLE 1.1.4 Solve the following system over Z2:

x+ y + z = 0
x+ z = 1.

Solution. We add the first equation to the second to get y = 1. Then x =
1− z = 1 + z, with z arbitrary. Hence the solutions are (x, y, z) = (1, 1, 0)
and (0, 1, 1).

We use Q and R to denote the fields of rational and real numbers, re-
spectively. Unless otherwise stated, the field used will be Q.
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1.2 Solving linear equations

We show how to solve any system of linear equations over an arbitrary field,
using the GAUSS–JORDAN algorithm. We first need to define some terms.

DEFINITION 1.2.1 (Row–echelon form) A matrix is in row–echelon
form if

(i) all zero rows (if any) are at the bottom of the matrix and

(ii) if two successive rows are non–zero, the second row starts with more
zeros than the first (moving from left to right).

For example, the matrix 
0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0


is in row–echelon form, whereas the matrix

0 1 0 0
0 1 0 0
0 0 0 0
0 0 0 0


is not in row–echelon form.

The zero matrix of any size is always in row–echelon form.

DEFINITION 1.2.2 (Reduced row–echelon form) A matrix is in re-
duced row–echelon form if

1. it is in row–echelon form,

2. the leading (leftmost non–zero) entry in each non–zero row is 1,

3. all other elements of the column in which the leading entry 1 occurs
are zeros.

For example the matrices

[
1 0
0 1

]
and


0 1 2 0 0 2
0 0 0 1 0 3
0 0 0 0 1 4
0 0 0 0 0 0


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are in reduced row–echelon form, whereas the matrices 1 0 0
0 1 0
0 0 2

 and

 1 2 0
0 1 0
0 0 0


are not in reduced row–echelon form, but are in row–echelon form.

The zero matrix of any size is always in reduced row–echelon form.

Notation. If a matrix is in reduced row–echelon form, it is useful to denote
the column numbers in which the leading entries 1 occur, by c1, c2, . . . , cr,
with the remaining column numbers being denoted by cr+1, . . . , cn, where
r is the number of non–zero rows. For example, in the 4× 6 matrix above,
we have r = 3, c1 = 2, c2 = 4, c3 = 5, c4 = 1, c5 = 3, c6 = 6.

The following operations are the ones used on systems of linear equations
and do not change the solutions.

DEFINITION 1.2.3 (Elementary row operations) There are three
types of elementary row operations that can be performed on matrices:

1. Interchanging two rows:

Ri ↔ Rj interchanges rows i and j.

2. Multiplying a row by a non–zero scalar:

Ri → tRi multiplies row i by the non–zero scalar t.

3. Adding a multiple of one row to another row:

Rj → Rj + tRi adds t times row i to row j.

DEFINITION 1.2.4 [Row equivalence]Matrix A is row–equivalent to ma-
trix B if B is obtained from A by a sequence of elementary row operations.

EXAMPLE 1.2.1 Working from left to right,

A =

 1 2 0
2 1 1
1 −1 2

 R2 → R2 + 2R3

 1 2 0
4 −1 5
1 −1 2


R2 ↔ R3

 1 2 0
1 −1 2
4 −1 5

 R1 → 2R1

 2 4 0
1 −1 2
4 −1 5

 = B.



8 CHAPTER 1. LINEAR EQUATIONS

Thus A is row–equivalent to B. Clearly B is also row–equivalent to A, by
performing the inverse row–operations R1 → 1

2R1, R2 ↔ R3, R2 → R2−2R3

on B.
It is not difficult to prove that if A and B are row–equivalent augmented

matrices of two systems of linear equations, then the two systems have the
same solution sets – a solution of the one system is a solution of the other.
For example the systems whose augmented matrices are A and B in the
above example are respectively

x+ 2y = 0
2x+ y = 1
x− y = 2

and


2x+ 4y = 0
x− y = 2

4x− y = 5

and these systems have precisely the same solutions.

1.3 The Gauss–Jordan algorithm

We now describe the GAUSS–JORDAN ALGORITHM. This is a process
which starts with a given matrix A and produces a matrix B in reduced row–
echelon form, which is row–equivalent to A. If A is the augmented matrix
of a system of linear equations, then B will be a much simpler matrix than
A from which the consistency or inconsistency of the corresponding system
is immediately apparent and in fact the complete solution of the system can
be read off.

STEP 1.
Find the first non–zero column moving from left to right, (column c1)

and select a non–zero entry from this column. By interchanging rows, if
necessary, ensure that the first entry in this column is non–zero. Multiply
row 1 by the multiplicative inverse of a1c1 thereby converting a1c1 to 1. For
each non–zero element aic1 , i > 1, (if any) in column c1, add −aic1 times
row 1 to row i, thereby ensuring that all elements in column c1, apart from
the first, are zero.

STEP 2. If the matrix obtained at Step 1 has its 2nd, . . . ,mth rows all
zero, the matrix is in reduced row–echelon form. Otherwise suppose that
the first column which has a non–zero element in the rows below the first is
column c2. Then c1 < c2. By interchanging rows below the first, if necessary,
ensure that a2c2 is non–zero. Then convert a2c2 to 1 and by adding suitable
multiples of row 2 to the remaing rows, where necessary, ensure that all
remaining elements in column c2 are zero.
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The process is repeated and will eventually stop after r steps, either
because we run out of rows, or because we run out of non–zero columns. In
general, the final matrix will be in reduced row–echelon form and will have
r non–zero rows, with leading entries 1 in columns c1, . . . , cr, respectively.

EXAMPLE 1.3.1

 0 0 4 0
2 2 −2 5
5 5 −1 5

 R1 ↔ R2

 2 2 −2 5
0 0 4 0
5 5 −1 5



R1 → 1
2R1

 1 1 −1 5
2

0 0 4 0
5 5 −1 5

 R3 → R3 − 5R1

 1 1 −1 5
2

0 0 4 0
0 0 4 −15

2



R2 → 1
4R2

 1 1 −1 5
2

0 0 1 0
0 0 4 −15

2

 {
R1 → R1 +R2

R3 → R3 − 4R2

 1 1 0 5
2

0 0 1 0
0 0 0 −15

2



R3 → −2
15 R3

 1 1 0 5
2

0 0 1 0
0 0 0 1

 R1 → R1 − 5
2R3

 1 1 0 0
0 0 1 0
0 0 0 1


The last matrix is in reduced row–echelon form.

REMARK 1.3.1 It is possible to show that a given matrix over an ar-
bitrary field is row–equivalent to precisely one matrix which is in reduced
row–echelon form.

A flow–chart for the Gauss–Jordan algorithm, based on [1, page 83] is pre-
sented in figure 1.1 below.

1.4 Systematic solution of linear systems.

Suppose a system of m linear equations in n unknowns x1, · · · , xn has aug-
mented matrix A and that A is row–equivalent to a matrix B which is in
reduced row–echelon form, via the Gauss–Jordan algorithm. Then A and B
are m× (n+ 1). Suppose that B has r non–zero rows and that the leading
entry 1 in row i occurs in column number ci, for 1 ≤ i ≤ r. Then

1 ≤ c1 < c2 < · · · , < cr ≤ n+ 1.
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Figure 1.1: Gauss–Jordan algorithm.
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Also assume that the remaining column numbers are cr+1, · · · , cn+1, where

1 ≤ cr+1 < cr+2 < · · · < cn ≤ n+ 1.

Case 1: cr = n + 1. The system is inconsistent. For the last non–zero
row of B is [0, 0, · · · , 1] and the corresponding equation is

0x1 + 0x2 + · · ·+ 0xn = 1,

which has no solutions. Consequently the original system has no solutions.

Case 2: cr ≤ n. The system of equations corresponding to the non–zero
rows of B is consistent. First notice that r ≤ n here.

If r = n, then c1 = 1, c2 = 2, · · · , cn = n and

B =



1 0 · · · 0 d1

0 1 · · · 0 d2
...

...
0 0 · · · 1 dn
0 0 · · · 0 0
...

...
0 0 · · · 0 0


.

There is a unique solution x1 = d1, x2 = d2, · · · , xn = dn.

If r < n, there will be more than one solution (infinitely many if the
field is infinite). For all solutions are obtained by taking the unknowns
xc1 , · · · , xcr as dependent unknowns and using the r equations correspond-
ing to the non–zero rows of B to express these unknowns in terms of the
remaining independent unknowns xcr+1 , . . . , xcn , which can take on arbi-
trary values:

xc1 = b1n+1 − b1cr+1xcr+1 − · · · − b1cnxcn
...

xcr = br n+1 − brcr+1xcr+1 − · · · − brcnxcn .

In particular, taking xcr+1 = 0, . . . , xcn−1 = 0 and xcn = 0, 1 respectively,
produces at least two solutions.

EXAMPLE 1.4.1 Solve the system

x+ y = 0
x− y = 1

4x+ 2y = 1.
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Solution. The augmented matrix of the system is

A =

 1 1 0
1 −1 1
4 2 1


which is row equivalent to

B =

 1 0 1
2

0 1 −1
2

0 0 0

 .
We read off the unique solution x = 1

2 , y = −1
2 .

(Here n = 2, r = 2, c1 = 1, c2 = 2. Also cr = c2 = 2 < 3 = n + 1 and
r = n.)

EXAMPLE 1.4.2 Solve the system

2x1 + 2x2 − 2x3 = 5
7x1 + 7x2 + x3 = 10
5x1 + 5x2 − x3 = 5.

Solution. The augmented matrix is

A =

 2 2 −2 5
7 7 1 10
5 5 −1 5


which is row equivalent to

B =

 1 1 0 0
0 0 1 0
0 0 0 1

 .
We read off inconsistency for the original system.

(Here n = 3, r = 3, c1 = 1, c2 = 3. Also cr = c3 = 4 = n+ 1.)

EXAMPLE 1.4.3 Solve the system

x1 − x2 + x3 = 1
x1 + x2 − x3 = 2.
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Solution. The augmented matrix is

A =
[

1 −1 1 1
1 1 −1 2

]
which is row equivalent to

B =
[

1 0 0 3
2

0 1 −1 1
2

]
.

The complete solution is x1 = 3
2 , x2 = 1

2 + x3, with x3 arbitrary.
(Here n = 3, r = 2, c1 = 1, c2 = 2. Also cr = c2 = 2 < 4 = n + 1 and
r < n.)

EXAMPLE 1.4.4 Solve the system

6x3 + 2x4 − 4x5 − 8x6 = 8
3x3 + x4 − 2x5 − 4x6 = 4

2x1 − 3x2 + x3 + 4x4 − 7x5 + x6 = 2
6x1 − 9x2 + 11x4 − 19x5 + 3x6 = 1.

Solution. The augmented matrix is

A =


0 0 6 2 −4 −8 8
0 0 3 1 −2 −4 4
2 −3 1 4 −7 1 2
6 −9 0 11 −19 3 1


which is row equivalent to

B =


1 −3

2 0 11
6 −19

6 0 1
24

0 0 1 1
3 −2

3 0 5
3

0 0 0 0 0 1 1
4

0 0 0 0 0 0 0

 .
The complete solution is

x1 = 1
24 + 3

2x2 − 11
6 x4 + 19

6 x5,

x3 = 5
3 −

1
3x4 + 2

3x5,

x6 = 1
4 ,

with x2, x4, x5 arbitrary.
(Here n = 6, r = 3, c1 = 1, c2 = 3, c3 = 6; cr = c3 = 6 < 7 = n+ 1; r < n.)
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EXAMPLE 1.4.5 Find the rational number t for which the following sys-
tem is consistent and solve the system for this value of t.

x+ y = 2
x− y = 0

3x− y = t.

Solution. The augmented matrix of the system is

A =

 1 1 2
1 −1 0
3 −1 t


which is row–equivalent to the simpler matrix

B =

 1 1 2
0 1 1
0 0 t− 2

 .
Hence if t 6= 2 the system is inconsistent. If t = 2 the system is consistent
and

B =

 1 1 2
0 1 1
0 0 0

→
 1 0 1

0 1 1
0 0 0

 .
We read off the solution x = 1, y = 1.

EXAMPLE 1.4.6 For which rationals a and b does the following system
have (i) no solution, (ii) a unique solution, (iii) infinitely many solutions?

x− 2y + 3z = 4
2x− 3y + az = 5
3x− 4y + 5z = b.

Solution. The augmented matrix of the system is

A =

 1 −2 3 4
2 −3 a 5
3 −4 5 b


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{
R2 → R2 − 2R1

R3 → R3 − 3R1

 1 −2 3 4
0 1 a− 6 −3
0 2 −4 b− 12


R3 → R3 − 2R2

 1 −2 3 4
0 1 a− 6 −3
0 0 −2a+ 8 b− 6

 = B.

Case 1. a 6= 4. Then −2a+ 8 6= 0 and we see that B can be reduced to
a matrix of the form  1 0 0 u

0 1 0 v

0 0 1 b−6
−2a+8


and we have the unique solution x = u, y = v, z = (b− 6)/(−2a+ 8).

Case 2. a = 4. Then

B =

 1 −2 3 4
0 1 −2 −3
0 0 0 b− 6

 .
If b 6= 6 we get no solution, whereas if b = 6 then

B =

 1 −2 3 4
0 1 −2 −3
0 0 0 0

 R1 → R1 + 2R2

 1 0 −1 −2
0 1 −2 −3
0 0 0 0

. We

read off the complete solution x = −2 + z, y = −3 + 2z, with z arbitrary.

EXAMPLE 1.4.7 Find the reduced row–echelon form of the following ma-
trix over Z3: [

2 1 2 1
2 2 1 0

]
.

Hence solve the system

2x+ y + 2z = 1
2x+ 2y + z = 0

over Z3.

Solution.
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[
2 1 2 1
2 2 1 0

]
R2 → R2 −R1

[
2 1 2 1
0 1 −1 −1

]
=
[

2 1 2 1
0 1 2 2

]
R1 → 2R1

[
1 2 1 2
0 1 2 2

]
R1 → R1 +R2

[
1 0 0 1
0 1 2 2

]
.

The last matrix is in reduced row–echelon form.
To solve the system of equations whose augmented matrix is the given

matrix over Z3, we see from the reduced row–echelon form that x = 1 and
y = 2 − 2z = 2 + z, where z = 0, 1, 2. Hence there are three solutions
to the given system of linear equations: (x, y, z) = (1, 2, 0), (1, 0, 1) and
(1, 1, 2).

1.5 Homogeneous systems

A system of homogeneous linear equations is a system of the form

a11x1 + a12x2 + · · ·+ a1nxn = 0
a21x1 + a22x2 + · · ·+ a2nxn = 0

...
am1x1 + am2x2 + · · ·+ amnxn = 0.

Such a system is always consistent as x1 = 0, · · · , xn = 0 is a solution.
This solution is called the trivial solution. Any other solution is called a
non–trivial solution.

For example the homogeneous system

x− y = 0
x+ y = 0

has only the trivial solution, whereas the homogeneous system

x− y + z = 0
x+ y + z = 0

has the complete solution x = −z, y = 0, z arbitrary. In particular, taking
z = 1 gives the non–trivial solution x = −1, y = 0, z = 1.

There is simple but fundamental theorem concerning homogeneous sys-
tems.

THEOREM 1.5.1 A homogeneous system of m linear equations in n un-
knowns always has a non–trivial solution if m < n.
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Proof. Suppose that m < n and that the coefficient matrix of the system
is row–equivalent to B, a matrix in reduced row–echelon form. Let r be the
number of non–zero rows in B. Then r ≤ m < n and hence n − r > 0 and
so the number n − r of arbitrary unknowns is in fact positive. Taking one
of these unknowns to be 1 gives a non–trivial solution.

REMARK 1.5.1 Let two systems of homogeneous equations in n un-
knowns have coefficient matrices A and B, respectively. If each row of B is
a linear combination of the rows of A (i.e. a sum of multiples of the rows
of A) and each row of A is a linear combination of the rows of B, then it is
easy to prove that the two systems have identical solutions. The converse is
true, but is not easy to prove. Similarly if A and B have the same reduced
row–echelon form, apart from possibly zero rows, then the two systems have
identical solutions and conversely.

There is a similar situation in the case of two systems of linear equations
(not necessarily homogeneous), with the proviso that in the statement of
the converse, the extra condition that both the systems are consistent, is
needed.

1.6 PROBLEMS

1. Which of the following matrices of rationals is in reduced row–echelon
form?

(a)

 1 0 0 0 −3
0 0 1 0 4
0 0 0 1 2

 (b)

 0 1 0 0 5
0 0 1 0 −4
0 0 0 −1 3

 (c)

 0 1 0 0
0 0 1 0
0 1 0 −2



(d)


0 1 0 0 2
0 0 0 0 −1
0 0 0 1 4
0 0 0 0 0

 (e)


1 2 0 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 0 0

 (f)


0 0 0 0
0 0 1 2
0 0 0 1
0 0 0 0



(g)


1 0 0 0 1
0 1 0 0 2
0 0 0 1 −1
0 0 0 0 0

. [Answers: (a), (e), (g)]

2. Find reduced row–echelon forms which are row–equivalent to the following
matrices:

(a)
[

0 0 0
2 4 0

]
(b)

[
0 1 3
1 2 4

]
(c)

 1 1 1
1 1 0
1 0 0

 (d)

 2 0 0
0 0 0
−4 0 0

 .
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[Answers:

(a)
[

1 2 0
0 0 0

]
(b)

[
1 0 −2
0 1 3

]
(c)

 1 0 0
0 1 0
0 0 1

 (d)

 1 0 0
0 0 0
0 0 0

.]

3. Solve the following systems of linear equations by reducing the augmented
matrix to reduced row–echelon form:

(a) x+ y + z = 2 (b) x1 + x2 − x3 + 2x4 = 10
2x+ 3y − z = 8 3x1 − x2 + 7x3 + 4x4 = 1
x− y − z = −8 −5x1 + 3x2 − 15x3 − 6x4 = 9

(c) 3x− y + 7z = 0 (d) 2x2 + 3x3 − 4x4 = 1
2x− y + 4z = 1

2 2x3 + 3x4 = 4
x− y + z = 1 2x1 + 2x2 − 5x3 + 2x4 = 4

6x− 4y + 10z = 3 2x1 − 6x3 + 9x4 = 7

[Answers: (a) x = −3, y = 19
4 , z = 1

4 ; (b) inconsistent;

(c) x = −1
2 − 3z, y = −3

2 − 2z, with z arbitrary;

(d) x1 = 19
2 − 9x4, x2 = −5

2 + 17
4 x4, x3 = 2− 3

2x4, with x4 arbitrary.]

4. Show that the following system is consistent if and only if c = 2a − 3b
and solve the system in this case.

2x− y + 3z = a

3x+ y − 5z = b

−5x− 5y + 21z = c.

[Answer: x = a+b
5 + 2

5z, y = −3a+2b
5 + 19

5 z, with z arbitrary.]

5. Find the value of t for which the following system is consistent and solve
the system for this value of t.

x+ y = 1
tx+ y = t

(1 + t)x+ 2y = 3.

[Answer: t = 2; x = 1, y = 0.]
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6. Solve the homogeneous system

−3x1 + x2 + x3 + x4 = 0
x1 − 3x2 + x3 + x4 = 0
x1 + x2 − 3x3 + x4 = 0
x1 + x2 + x3 − 3x4 = 0.

[Answer: x1 = x2 = x3 = x4, with x4 arbitrary.]

7. For which rational numbers λ does the homogeneous system

x+ (λ− 3)y = 0
(λ− 3)x+ y = 0

have a non–trivial solution?

[Answer: λ = 2, 4.]

8. Solve the homogeneous system

3x1 + x2 + x3 + x4 = 0
5x1 − x2 + x3 − x4 = 0.

[Answer: x1 = −1
4x3, x2 = −1

4x3 − x4, with x3 and x4 arbitrary.]

9. Let A be the coefficient matrix of the following homogeneous system of
n equations in n unknowns:

(1− n)x1 + x2 + · · ·+ xn = 0
x1 + (1− n)x2 + · · ·+ xn = 0

· · · = 0
x1 + x2 + · · ·+ (1− n)xn = 0.

Find the reduced row–echelon form of A and hence, or otherwise, prove that
the solution of the above system is x1 = x2 = · · · = xn, with xn arbitrary.

10. Let A =
[
a b
c d

]
be a matrix over a field F . Prove that A is row–

equivalent to
[

1 0
0 1

]
if ad − bc 6= 0, but is row–equivalent to a matrix

whose second row is zero, if ad− bc = 0.
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11. For which rational numbers a does the following system have (i) no
solutions (ii) exactly one solution (iii) infinitely many solutions?

x+ 2y − 3z = 4
3x− y + 5z = 2

4x+ y + (a2 − 14)z = a+ 2.

[Answer: a = −4, no solution; a = 4, infinitely many solutions; a 6= ±4,
exactly one solution.]

12. Solve the following system of homogeneous equations over Z2:

x1 + x3 + x5 = 0
x2 + x4 + x5 = 0

x1 + x2 + x3 + x4 = 0
x3 + x4 = 0.

[Answer: x1 = x2 = x4 + x5, x3 = x4, with x4 and x5 arbitrary elements of
Z2.]

13. Solve the following systems of linear equations over Z5:

(a) 2x+ y + 3z = 4 (b) 2x+ y + 3z = 4
4x+ y + 4z = 1 4x+ y + 4z = 1
3x+ y + 2z = 0 x+ y = 3.

[Answer: (a) x = 1, y = 2, z = 0; (b) x = 1 + 2z, y = 2 + 3z, with z an
arbitrary element of Z5.]

14. If (α1, . . . , αn) and (β1, . . . , βn) are solutions of a system of linear equa-
tions, prove that

((1− t)α1 + tβ1, . . . , (1− t)αn + tβn)

is also a solution.

15. If (α1, . . . , αn) is a solution of a system of linear equations, prove that
the complete solution is given by x1 = α1 + y1, . . . , xn = αn + yn, where
(y1, . . . , yn) is the general solution of the associated homogeneous system.
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16. Find the values of a and b for which the following system is consistent.
Also find the complete solution when a = b = 2.

x+ y − z + w = 1
ax+ y + z + w = b

3x+ 2y + aw = 1 + a.

[Answer: a 6= 2 or a = 2 = b; x = 1− 2z, y = 3z − w, with z, w arbitrary.]

17. Let F = {0, 1, a, b} be a field consisting of 4 elements.

(a) Determine the addition and multiplication tables of F . (Hint: Prove
that the elements 1+0, 1+1, 1+a, 1+ b are distinct and deduce that
1 + 1 + 1 + 1 = 0; then deduce that 1 + 1 = 0.)

(b) A matrix A, whose elements belong to F , is defined by

A =

 1 a b a
a b b 1
1 1 1 a

 ,
prove that the reduced row–echelon form of A is given by the matrix

B =

 1 0 0 0
0 1 0 b
0 0 1 1

 .


