Chapter 6

EIGENVALUES AND
EIGENVECTORS

6.1 Motivation

We motivate the chapter on eigenvalues by discussing the equation
2 2 _
azx” + 2hxy + by” = ¢,

where not all of a, h, b are zero. The expression az? + 2hzy + by? is called
a quadratic form in x and y and we have the identity

a h x
az® +2hay + by’ = [ z y]{h b}{y]:XtAX,

a h

T
whereX—{y}andA—[h b

] . A is called the matrix of the quadratic

form.

We now rotate the z, y axes anticlockwise through 6 radians to new
x1, y1 axes. The equations describing the rotation of axes are derived as
follows:

Let P have coordinates (z, y) relative to the z, y axes and coordinates
(z1, y1) relative to the x1, y; axes. Then referring to Figure 6.1:
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Y P

Y1 x1

Figure 6.1: Rotating the axes.

x = 0Q=O0OPcos (0+ «)
= OP(cosf cosa — sinfsin @)
= (OPcosa)cosf — (OPsina)sin 6
= ORcosf — PRsinf

= xpcosf —ypsind.

Similarly y = x1sin 6 + y1 cos 6.
We can combine these transformation equations into the single matrix

equation:
x | | cosf —sind T
y | | sinf@  cosf |’

or X = PY, where X = | © | v = | ® | and p = | €80 —sinf |
Y Y1 sin 6 cos 6

We note that the columns of P give the directions of the positive z1 and y;
axes. Also P is an orthogonal matrix — we have PP! = I, and so P~! = P*.
The matrix P has the special property that det P = 1.

cosf) —sind
sinf  cosf
We shall show soon that any 2 x 2 real orthogonal matrix with determinant

A matrix of the type P = } is called a rotation matrix.
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equal to 1 is a rotation matrix.
We can also solve for the new coordinates in terms of the old ones:

1| _y _pty — C(?S@ sin 6 x 7
Y1 —sinf cosf Y

so r1 = xcosf + ysinfh and y; = —xsinf + ycosd. Then

X'AX = (PY)'A(PY) = YY(P'AP)Y.
Now suppose, as we later show, that it is possible to choose an angle 6 so
that PLAP is a diagonal matrix, say diag(A1, A2). Then

M0 T
t 1 1 2 2
X'AX = [z yl][o )\2][y1]—)\1$1+)\2y1 (6.1)

and relative to the new axes, the equation az? + 2hay + by?> = ¢ becomes
A2 + Aoy = ¢, which is quite easy to sketch. This curve is symmetrical
about the x; and y; axes, with P, and P», the respective columns of P,
giving the directions of the axes of symmetry.

Also it can be verified that P, and P» satisfy the equations

AP1 = )\1P1 and APQ = )\2P2.

U1

These equations force a restriction on A\; and Ao. For if P, = [ ], the

U1
first equation becomes

P e S A P b

Hence we are dealing with a homogeneous system of two linear equations in
two unknowns, having a non—trivial solution (u;, v1). Hence

a—/\1 h
h b— X\

Similarly, Ao satisfies the same equation. In expanded form, A; and As
satisfy

=0.

M —(a+bX+ab—h*=0.

This equation has real roots

\— a+b+/(a+b)?—4(ab—h?) a+bt/(a—0b)?+4n? (6.2)
2 2
(The roots are distinct if a # b or h # 0. The case a = b and h = 0 needs
no investigation, as it gives an equation of a circle.)
The equation A2 — (a+b)A+ab— h? = 0 is called the eigenvalue equation
of the matrix A.
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6.2 Definitions and examples

DEFINITION 6.2.1 (Eigenvalue, eigenvector) Let A be a complex
square matrix. Then if X is a complex number and X a mon-zero com-
plex column vector satisfying AX = AX, we call X an eigenvector of A,
while A is called an eigenvalue of A. We also say that X is an eigenvector
corresponding to the eigenvalue .

So in the above example P; and P, are eigenvectors corresponding to Ap
and Ay, respectively. We shall give an algorithm which starts from the
a

nob ] and constructs a rotation matrix P such that

eigenvalues of A = [

P'AP is diagonal.

As noted above, if A is an eigenvalue of an n X n matrix A, with
corresponding eigenvector X, then (A — AI,)X = 0, with X # 0, so
det (A — A\I,) = 0 and there are at most n distinct eigenvalues of A.

Conversely if det (A — AI,,) = 0, then (A — AI,) X = 0 has a non—trivial

solution X and so A is an eigenvalue of A with X a corresponding eigenvector.

DEFINITION 6.2.2 (Characteristic polynomial, equation)

The polynomial det (A — AI,,) is called the characteristic polynomial of A
and is often denoted by cha(A). The equation det (A — AI,) = 0 is called
the characteristic equation of A. Hence the eigenvalues of A are the roots
of the characteristic polynomial of A.

a

For a 2 x 2 matrix A = [ . b } , it is easily verified that the character-

d
istic polynomial is A? — (trace A)\ +det A, where trace A = a +d is the sum
of the diagonal elements of A.

21

EXAMPLE 6.2.1 Find the eigenvalues of A = [ 1 o

vectors.

] and find all eigen-

Solution. The characteristic equation of A is A2 — 4\ +3 =0, or
A=1)(A=3)=0.

Hence A =1 or 3. The eigenvector equation (A — AI,)X = 0 reduces to

I
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or
2-Nz+y =
r+(2-Ny =
Taking A = 1 gives
rt+y =
z+y = 0,
which has solution x = —y, y arbitrary. Consequently the eigenvectors

corresponding to A = 1 are the vectors [ _Zy,/ } , with y £ 0.
Taking A = 3 gives

—r+y = 0
r—y = 07
which has solution x = y, y arbitrary. Consequently the eigenvectors corre-
sponding to A = 3 are the vectors { Z } , with y #£ 0.
Our next result has wide applicability:

THEOREM 6.2.1 Let A be a 2 x 2 matrix having distinct eigenvalues A;
and A and corresponding eigenvectors X; and X,. Let P be the matrix
whose columns are X; and Xs, respectively. Then P is non—singular and

A1 O
-1 o 1
P AP_[O M].

Proof. Suppose AX; = \1 X7 and AXs = A2 Xs. We show that the system
of homogeneous equations

X1 +yXo=0

has only the trivial solution. Then by theorem 2.5.10 the matrix P =
[X1|X2] is non-singular. So assume

Then A(zX; +yX2) = A0 =0, so z(AX1) + y(AX2) = 0. Hence

xA1 X1 + yAaXo = 0. (6.4)
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Multiplying equation 6.3 by A; and subtracting from equation 6.4 gives
()\2 — )\1)ng =0.

Hence y = 0, as (A2— A1) # 0 and Xy # 0. Then from equation 6.3, zX; =0
and hence x = 0.
Then the equations AX; = A\ X7 and AXs = A X5 give

AP = A[X1]|X32] = [AX1|AXo] = [MX1|AXs]
_ A0 A0
ST
SO

A0

-1 _ 1
par=[ % 0]
EXAMPLE 6.2.2 Let A = ? ; ] be the matrix of example 6.2.1. Then

X, = [ _1 ] and Xy = [ } ] are eigenvectors corresponding to eigenvalues

1 and 3, respectively. Hence if P = [ _i i } , we have
10
—1 _
pap=[1 0]

There are two immediate applications of theorem 6.2.1. The first is to the
calculation of A™: If P~1AP =diag (\1, A2), then A = Pdiag (A1, o) P!
and

- M 0] o\ ST A 0 ST A 0]
A_<P[O)\2]P>_P[O)\2]P_P[O)\QP.

The second application is to solving a system of linear differential equations
dx

U az + by
d
d—z = cx+dy,
where A = [ CCL d ] is a matrix of real or complex numbers and x and y

are functions of ¢. The system can be written in matrix form as X = AX,

[ []-[§]

where
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T

We make the substitution X = PY, where Y = [ . Then x; and 11

| I

A
are also functions of ¢ and

X =PY =AX = A(PY), soY = (P 'AP)Y = [ Ar 0 ]Y

Hence fl = )\11‘1 and 311 = )\le.
These differential equations are well-known to have the solutions x7 =
21(0)eM? and y; = y1(0)e?!, where x1(0) is the value of 21 when ¢ = 0.

[If % = kx, where k is a constant, then

d( ke \_ —kt g dr —kt Kty _
£<e :c) = —ke Mz +e - ke "z +e "kx = 0.
Hence e %z is constant, so e ¥z = ¢ 7*02(0) = 2(0). Hence z = x(0)e** ]
However [ zlég)) } =p! [ zgg; ], so this determines 21(0) and y;(0) in
1

terms of z(0) and y(0). Hence ultimately x and y are determined as explicit
functions of ¢, using the equation X = PY.

EXAMPLE 6.2.3 Let A = [ Z :2 } Use the eigenvalue method to
derive an explicit formula for A™ and also solve the system of differential
equations

dx

2 oy

7 r — 3y
dy

29— pp—

dt ‘r 5y7

given x =7 and y = 13 when t = 0.

Solution. The characteristic polynomial of A is A2+3A+2 which has distinct

roots Ay = —1 and Ay = —2. We find corresponding eigenvectors X; = [ 1 ]
1 3

andX2:[3 1 4

4]. HenceifP:[

}, we have P~1AP = diag (-1, —2).

Hence

A" = (Pdiag(~1, —2)P™1)" = Pdiag((-1)", (-2)")P"

- LS Gl T
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21 371 0 4 -3
= =D 1 4“0 2nH—1 1]
A1 3x2n 4 -3
= 0Ty 4><2”H—1 1]
" 4-3x2" —3+3x2"
- | 4—4x2" —344x2"

To solve the differential equation system, make the substitution X =
PY. Then z = x1 + 3y1, y = x1 + 4y1. The system then becomes

:i’l = —X
?)1 - _2y17

—t

so z1 = z1(0)e", y1 = y1(0)e . Now

.21?1(0) _ P—l .%'(O) — 4 =3 7 = -1l
w0 Lv@ ] L-v afls ]l 6]
sox; = —1le7t and y; = 6e2. Hence v = —11le + 3(6e72) = —1let +
1872 y = —1le ! + 4(6e7 %) = —1let + 24e 2.

For a more complicated example we solve a system of inhomogeneous
recurrence relations.

EXAMPLE 6.2.4 Solve the system of recurrence relations

Tp+1 = 2xy, — Yn — 1
Yn+l = —Tp+ 2yn + 27

given that zo = 0 and yy = —1.

Solution. The system can be written in matrix form as
Xn+1 = AX, + B,

where

A= 2 was=[1]

It is then an easy induction to prove that

X,=A"Xg+ (A" ' +... + A+ 1,)B. (6.5)



6.2. DEFINITIONS AND EXAMPLES 123

Also it is easy to verify by the eigenvalue method that

s e ey
WhereU:[i 1]andV:[_1 _1].Hence
A g LAt = ZU+(3nl+”2'+3+1)V
= ZU+(3n4_1)V.

Then equation 6.5 gives

o (o [ 2] e 1]

which simplifies to

o] <[ Gorrom],

Hence x, = (2n+1—3")/4 and y, = (2n — 5 + 3")/4.

REMARK 6.2.1 If (A — I5)~! existed (that is, if det (A — I3) # 0, or
equivalently, if 1 is not an eigenvalue of A), then we could have used the
formula

An_1+"'+A+IQ :(An—lg)(A—Iz)_l. (66)
However the eigenvalues of A are 1 and 3 in the above problem, so formula 6.6
cannot be used there.

Our discussion of eigenvalues and eigenvectors has been limited to 2 x 2
matrices. The discussion is more complicated for matrices of size greater
than two and is best left to a second course in linear algebra. Nevertheless
the following result is a useful generalization of theorem 6.2.1. The reader
is referred to [28, page 350] for a proof.

THEOREM 6.2.2 Let A be an n x n matrix having distinct eigenvalues

A1, ..., A\p and corresponding eigenvectors Xy, ..., X,,. Let P be the matrix
whose columns are respectively X1, ..., X,. Then P is non-singular and
M O - 0
) 0 A -+ 0
P AP = . . .

0 0 - A
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Another useful result which covers the case where there are multiple eigen-
values is the following (The reader is referred to [28, pages 351-352] for a
proof):

THEOREM 6.2.3 Suppose the characteristic polynomial of A has the fac-

torization

det M, —A)=A—c)™ - (A—c)™,
where cq,...,c; are the distinct eigenvalues of A. Suppose that for i =
1,...,t, we have nullity (¢;I,, — A) = n;. For each such i, choose a basis

Xit, ..., Xin, for the eigenspace N(c;I, — A). Then the matrix
P = [XH’ e |X1n1| ... |Xt1| . ‘tht]

is non-singular and P~'AP is the following diagonal matrix

cly, 0 o 0
piap_ | 0 @le e 0
0 0 - el

(The notation means that on the diagonal there are n; elements ¢y, followed
by ng elements cy,. .., n; elements ¢;.)

6.3 PROBLEMS

1. Let A = [ ‘11 _g } . Find an invertible matrix P such that P~1AP =

diag (1, 3) and hence prove that
3" -1 3-3"

A" = A L.
2 th

0.6 0.8

2. 4= [ 0.4 0.2

} , prove that A" tends to a limiting matrix

[ ]

as 1n — OQ.
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3. Solve the system of differential equations

dx

= = 3x—-2
di Ty
dy

= = br—4
dt xy7

given z = 13 and y = 22 when ¢ = 0.
[Answer: z = Te! + 6e72, y = Tel + 15e72 )]

4. Solve the system of recurrence relations

Tptl = BTy — Yn
Yn+l = —Tp+ 3Yn,
given that zog = 1 and yy = 2.
[Answer: x, = 2" (3 —2"), y, = 2" 1(3 +2")

5. LetA:[a
c

] be a real or complex matrix with distinct eigenvalues

d
A1, A2 and corresponding eigenvectors X, Xo. Also let P = [X1|X3].

(a) Prove that the system of recurrence relations

Tpy1 = axy + by,

Yn+1 = an""dyn

has the solution
Tn

Yn

where « and 3 are determined by the equation

B!

(b) Prove that the system of differential equations

} = a1 X1 + A3 X0,

d—w = ar+b
at Y
d

d—i{ = cx+dy

has the solution

z ] = aeM X + e Xy,
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where a and (§ are determined by the equation
« 1| =(0) ]
=P .
[ B } [ y(0)

Let A= [ @ dn } be a real matrix with non-real eigenvalues A\ =
a1 a22

a +ib and X = a — ib, with corresponding eigenvectors X = U + iV
and X = U — iV, where U and V are real vectors. Also let P be the
real matrix defined by P = [U|V]. Finally let a + ib = re?, where
r > 0 and 0 is real.

(a) Prove that

AU = aU -0V
AV = bU +aV.

(b) Deduce that
plap—| ¢ °?
b a |’

(c) Prove that the system of recurrence relations

Tntl = Q11Tn + A12Yn

Yn+l = G21Tp + A22Yn

has the solution

[ i" ] =r"{(aU + BV) cosnb + (U — aV)sinnb},

where « and 3 are determined by the equation

B

(d) Prove that the system of differential equations

d—w = ar+b
a Y
d

L cx + dy

dt
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has the solution

[ :yc } = e"{(aU + BV) cosbt + (BU — aV) sin bt},

where « and 3 are determined by the equation

M

[Hint: Let { 5 ] =P [ 51 ] Also let z = x1 4+ iy;. Prove that
1
z2=(a—1ib)z

and deduce that
x1 +iy; = e (a +i3)(cos bt + isin bt).

Then equate real and imaginary parts to solve for x1, y1 and
hence z, y.]

7. (The case of repeated eigenvalues.) Let A = { CCL Z ] and suppose

that the characteristic polynomial of A, A2 — (a + d)\ + (ad — bc), has
a repeated root «. Also assume that A # als. Let B = A — als.

(i) Prove that (a — d)? + 4bc = 0.

(ii) Prove that B2 = 0.
(iii) Prove that BXs # 0 for some vector Xo; indeed, show that Xo

can be taken to be [é]or [(1]]

(iv) Let X; = BX5. Prove that P = [X;|X3] is non—singular,
AX1 = OzXl and AX2 = O[XQ + X1
and deduce that
1 [0 1
P AP = .
0 o

8. Use the previous result to solve system of the differential equations

dr

> 4y —
dt vy
d

& _ 4x + 8y,

dt
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given that x =1 =y when ¢t = 0.
[To solve the differential equation

i kx = f(t), k a constant,

multiply throughout by e=*, thereby converting the left-hand side to

& (i) )

[Answer: o = (1 — 3t)e%, y = (1 + 6t)e% ]

9. Let
1/2 1/2 0
A=|1/4 1/4 1/2
1/4 1/4 1/2
(a) Verify that det (A3 — A), the characteristic polynomial of A, is
given by
1
A=1AN— 1)

(b) Find a non-singular matrix P such that P"'AP = diag(1, 0, ).
(c) Prove that

TRERE 1 2 2 —4
A":g 11 +37 -1 -1 2
11 1 ' -1 -1 2
ifn>1.
10. Let

5 2 -2

A= 2 5 -2

-2 -2 5

(a) Verify that det (A[3 — A), the characteristic polynomial of A, is
given by
(A=3)2(A—9).

(b) Find a non-singular matrix P such that P~1AP = diag (3, 3, 9).



