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Instruments in the flute family, unlike most wind instruments, are played with the input of the
instrument open to the atmosphere. Consequently, they operate at minima in the spectrum of acoustic
input impedance. Detailed examination of these minima requires measurements with large dynamic
range, which is why the flute has not been hitherto investigated in detail. We report the application of
a technique with high precision and large dynamic range to measurements of the impedance spectra of
flutes. We compare the acoustical impedance spectra of two examples of the modern orchestral flute
and an example of the classical flute. For each instrument, we measured several dozen of the most
commonly used different acoustic configurations or fingerings. The results are used to explain
features of the spectra of the sound produced, to explain performance features and difficulties of the
instruments, and to explain the differences between the performances of the classical and modern
instruments. Some hundreds of spectra and sound files are given in JSV+ to allow further
examination.
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1. Introduction

The flute is much older than history [1], and today is one of the most popular wind instruments. The
sound is excited by a jet of air striking an edge and thus it belongs to the diverse air jet family, which
includes the recorder, shakuhachi, syrinx, quena, ocarina and organ pipes. An excellent account of
the history and construction of the flute is given by [2].

The air jet can be excited by a transverse acoustic flow, and it then amplifies sinuous waves travelling
along it. In the presence of an acoustic resonator—the body of the instrument—alternate deflections
of the jet into and out of the resonator can sustain oscillations in the resonator over a small range of
suitable values of the jet velocity and length. Thus the operating frequency is largely determined by
the resonances of the bore of the instrument and the speed and length of the jet. The interaction
between the two can be understood in terms of the acoustic impedance of the resonating bore Z(f) (the
ratio of acoustic pressure to volume flow). The operation of various flute-family instruments is
discussed in detail by [3] and a brief summary is given later in the present article.

Because it involves air jet excitation, the input aperture (embouchure hole) of flutes is necessarily
open to the external air, whereas in most other wind instruments it is sealed by a reed and/or the
player's lips. The flute therefore operates at minima in the Z(f) of the resonator. This is the reason
why there are relatively few experimental studies of the linear acoustics of the flute: to determine Z(f)
sufficiently well to study the minima precisely, one requires measurements with large dynamic range.
Indeed, for most measurements of reed and lip-reed instruments, Z(f) is plotted on a linear scale, so
that most of the curve lies on the Z = 0 axis, or is obscured by noise.

In this paper we describe a technique that achieves the required dynamic range. It is an adaptation of a
spectrometer originally designed to operate rapidly for measurements on the vocal tract during speech
[4,5]. We synthesise a signal comprising all of the desired frequency components. For the flute, we
use the range 200 Hz (lower than the lowest note on the instrument) to either 3000 or 4000 Hz. The
impedance spectrum has little structure above about 3 kHz and the standard range of the instrument
does not include notes with fundamentals above 3 kHz. This synthesised signal is converted to an
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acoustic current via an amplifier, loudspeaker, impedance matching horns and an attenuator with a
high acoustic impedance. Because it is difficult to measure the volume flow with high precision over a
large range, our technique, like most previous techniques [6,7,8], compares known and unknown
impedances. We use this instrument to measure the acoustic impedance at the input or embouchure
hole of flutes.

In the flute, as in other woodwind instruments, the resonances of the instrument are varied by
opening and closing different combinations of keys. Each combination is called a fingering, and good
players know at least several dozens of these. A much longer list is given by Dick [9]. Much of the
interest in the acoustic performance of the instrument comes from comparing and contrasting the
performance of different fingerings for the same or for different notes, so we report acoustic
impedance spectra for several dozen different fingerings for the flute studied. We also report sound
spectra. Together, there are too many data for conventional publishing, so in this paper we choose a
small number of curves to illustrate some points, while we publish the complete set (including sound
files) electronically in JSV+.

2. The anatomy and evolution of the flute

2.1 Types of flutes
We report studies on flutes that are variants on two basic geometries (Figure 1). The body of the
modern or Boehm flute is nearly cylindrical, but the head joint is tapered towards the embouchure
end. The flute of the eighteenth and early nineteenth centuries (the classical flute) is approximately
conical over much of its length, with a cylindrical head-joint. The constraints of manufacturing the
varying tapers means that both flutes are usually made in sections. The head joint includes the
embouchure hole and has no keys. In the modern flute, the body is a long joint that has most of the
holes and/or keys. In the classical flute studied here, the 'body' comprised two sections, one with the
holes operated by the left hand, and the other with all or most of the holes operated by the right.
Various different foot joints are used on different flutes. On the modern flute, the C foot has three
tone holes (all operated by the right little finger) and permits a lowest note of C4. The longer B foot
has an extra tone hole and allows B3 to be played. This change produces substantial acoustical
differences, especially at the extremes of the range. The classical flute is and was much less
standardised. It may have a short foot stopping at D4, or a longer foot that may descend to C4. The
geometry of the foot may continue the cone of the body, or may flare out slightly at the end. The
modern flutes studied here are production-line models, which are widely available at relatively modest
price. This choice was made to facilitate comparisons by other researchers. There are no production
line classical flutes. Further, the original instruments of that period, usually made of wood, have
changed their geometry over time. The instrument we studied was made by a local maker. It is pitched
at A4 = 440 Hz, as are the modern flutes, which facilitates comparison with them. It has three
interchangeable feet, examples of the three mentioned above.

Figure 1 shows a schematic diagram of the modern and classical flutes, a simplified acoustical
schematic of each, and fingering diagrams that would be immediately familiar to a flutist. The
example chosen is the fingering used to play either F4 or F5 (different jet lengths and speeds are used
to play the two notes). The fingering diagram shows a player how to finger these notes: three fingers
and the thumb of the left hand depress their home keys, as do the first and fourth fingers of the right
hand. This can be readily related to the sketch of the flute, indicating which keys are touched on the
instrument, and also to a simplified acoustic schematic of the instrument. For the note F4, the first six
holes most remote from the embouchure hole are open, because F4 is six semitones above the lowest
note (B3) on this instrument. Eleven holes are closed: this is possible because one finger key may
close more than one hole, and because some holes are opened by keys rather than closed. All tone
holes on the instrument are approximately the same diameter, as shown in the acoustic schematic,
except for the three holes closest to the embouchure hole. The two closest are the smallest holes, and
are used as register holes for some of the highest notes, or for trills (rapid alternations of two notes)
which would otherwise cross the 'break' between the first register (fundamental) and second register
(second harmonic). The third small hole is used as a register hole for several notes (D5, D6, D#5,
A6) and also as a tone hole for the transition between C5 and C#5, or between C6 and C#6. This
double use requires that it be further up the tube than the expected place for such a tone hole, and this
in turn requires it to be small so as to have a large end effect. Most of the holes are approximately in
line, those off line are shown as ellipses. In one case there are two keys at the same distance from the
embouchure hole: these are alternates: they are very rarely opened together (one fingering for C#7 is
an exception), and exist mainly as an historical accident. The trill keys, the home key for the left
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fourth finger and the home key for the right fourth finger are closed when not touched. In the modern
flute, the body is cylindrical and the head has a slight conical taper. An adjustable cork in the head
makes the acoustic length rather shorter than the length of the instrument, as shown. In contrast, the
classical flute (shown below) has a body with a slight conical taper. The fingering diagram (again for
F4/5) shows that three fingers of the left hand cover the holes assigned to them. The first two fingers
of the right hand close their holes. The third finger has two jobs: it can either cover a hole or can
depress the 'F' key. Here it does the latter, as indicated by the black shaded key on the fingering
diagram. On this flute, this is the only key, and it opens a hole when depressed, so the ellipse at the
end of the 'F' key is shown white for this fingering.

left hand: 1  2  3  4

eft thumb

1  2  3  4   right hand

key not normally touched by a finger:

key untouched or hole open: key depressed or hole covered:

key not normally touched by a finger:

Modern flute

Classical flute

eft hand: 1         2     3  1       2       3  right hand

fingering 
for F4/5

fingering 
for F4/5

Figure 1. Fingering and acoustic schematic diagram for the modern and classical flutes. From
the top are shown a fingering diagram for the modern flute, a sketch of the modern flute and an
acoustic schematic of that instrument. Next is a fingering diagram and schematic for the
classical flute. A similar legend is used for all the fingerings and notes in the data base. The
example chosen here is the fingering for the notes F4 and F5.

The radical change in the flute in the nineteenth century was much larger and more abrupt than that of
the other woodwind instruments. This was due to the flutist and flute maker Theobold Boehm, who
aimed to make the flute louder, its timbre more homogeneous from note to note, and its tuning more
in accord with that of other instruments [10].

In the classical flute, successive opening of the finger holes produces a diatonic scale (D major).
Some of the remaining notes are produced by opening an extra tone hole, which is normally closed by
a key. Others are produced by 'cross fingering', i.e. closing one or more holes downstream of the
first open hole. This gives different timbre to adjacent notes.

Boehm’s first innovation was the introduction of larger holes on the conical-bore flute, which made
the instrument louder, and key rings and a coupling mechanism to avoid cross-fingering, which made
the timbre more homogeneous. This system allowed the notes of the chromatic scale over most of the
range to be played with all of the holes downstream of a particular point open. In search of a still
bigger sound, he redesigned the bore: a cylindrical body and a tapered head profile, which he
(inaccurately) called 'parabolic'. The cylindrical bore of the modern Boehm flute is larger (19 mm
diameter) than that of the classical flute everywhere except near the embouchure hole, where it tapers
to about 17 mm. This larger bore reduces energy losses near the walls. More importantly, the tone
holes are considerably larger (about 13 mm diameter) and almost uniform in size, and so radiate more
strongly. They also produce a brighter sound, as discussed later. Boehm developed a new system of
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coupled keys to cover these tone holes, now much too large for the unaided fingers. Thus most of the
ordinary notes of the instrument require no cross fingering and this, together with the large tone
holes, makes the downstream bore more nearly approximate a truncated pipe. This produces a more
homogeneous timbre. The changes to the flute since Boehm have been relatively minor. Boehm's
revolutionary changes to the flute influenced the design of the saxophone, and were also imitated (to a
lesser extent) on the clarinet. (The oboe and bassoon remain much more like their ancestors, having
small tone holes and, particularly on the bassoon, less rational key systems.)

2.2 Sound production in the flute
It is possible to link the findings of this empirical study with conclusions reached by theoretical
means. Detailed discussion, with extensive references, is given in [3], but it is helpful to summarise
the theoretical conclusions here.

The air jet
Only a simplified discussion of the sound production process in the flute is required for our purposes.
First, the blowing pressure and jet length must be sensitively adjusted by the player to give the correct
phase relation between the acoustic flow that is exciting the jet and the propagation of sinuous waves
along the jet to vary its inflow into the embouchure hole. This is why the example fingering shown in
Figure 1 is cited for two different notes: a faster (or shorter) jet can be used to excite a standing wave
at the second, rather than at the first, impedance minimum. More importantly for our present concerns
is the response of the instrument to this oscillating jet flow. If the jet has air velocity V and area SJ
and the flute tube has area SP, then the acoustic wave sustained in the flute by the jet has volume flow
UP

UP  =  
(V + jω∆L)ρVSJ

SPZ(f) (1)

where ∆L is the end-correction at the embouchure, ω = 2πf is the angular frequency and ρ is the
density of air. (Bold characters represent complex quantities.) Z(f) is the input impedance of the flute
as measured from outside the embouchure hole, in such a way that the radiation impedance of the
embouchure hole is included. This equation indicates the importance of measuring this input
impedance, and shows that the flute sounds at the minima in Z(f). The whole situation is, however,
rather more complex than this analysis suggests, for the calculation must actually be extended to
include harmonics of the fundamental tone. Sound generation is most efficient when the frequencies
of the impedance minima closely approximate a harmonic series (1, 2, 3, ...), for then all harmonics
generated by the nonlinear jet process are reinforced.

Bore and head-joint
The major acoustic losses in a wind instrument are created by viscous and thermal effects at the tube
walls, rather than by acoustic radiation. Wave attenuation in the bore increases with increasing
frequency as √ f and with decreasing tube radius as r -1. There is thus more loss in the tapering tube
of a classical flute than in a modern cylindrical Boehm flute, and all resonances become less
pronounced at high frequencies. The taper of the head-joint also has an important role in adjusting the
flute intonation [11,12] by decreasing the frequency of the low-octave resonances relative to those at
higher pitch. This takes account of the changes in blowing pressure and in lip-coverage of the
embouchure hole in typical flute performance technique. The material from which the flute is made is
expected to have little effect on the properties measured here, apart from its influence on surface
finish (which should be very smooth) and the shape of finger holes (which should not have sharp
edges). The detailed geometry of the lip plate and embouchure hole (shape, chimney height, undercut
angle, edge sharpness, etc.) are all vitally important in determining the tone and responsiveness of the
instrument.

Finger holes
Finger holes have important acoustic influence both when closed (when they contribute small extra
volumes to the bore) and when open (when they provide an inertive shunt to the outside air). The
internal standing wave in the flute bore always extends some distance past the first open hole (which
is why “cross-fingerings” work to produce semitones) and, in the case of notes in the third octave,
along the whole bore (which is why high-octave fingerings are complex) [13]. Benade [14] has
examined the behaviour of a row of open finger holes and concluded that they act as a high-pass
filter, the cut-off frequency being determined by the hole size and spacing in such a way that small
holes give a low cut-off frequency, this frequency typically being in the range 1500-2000 Hz. Above
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the cut-off, waves propagate rather freely along the instrument bore and are not reflected, hence
eliminating high-frequency resonances and reducing the strength of higher harmonics in the tone. It is
largely for this reason that classical flutes sound 'mellow', with a cut-off of around 1500 Hz on most
fingerings, while the modern flute is much 'brighter' in tone quality, having a cut-off somewhat
above 2000 Hz. This cut-off frequency also limits the pitch of the highest note playable on the
instrument, about A6 on a classical flute and about F7 on a modern flute.

While the tone holes on a modern flute are all nearly the same size, the finger holes on a classical flute
are much smaller and have different diameters, partly to bring their positions conveniently under the
fingers, and partly to adjust the intonation on cross-fingered and high-octave notes. This means that
the tone quality is not completely uniform from one note to another across the compass of the
instrument, a feature regarded as a deficiency in modern music, but sometimes exploited to advantage
in music of earlier centuries.

For notes in the third and fourth octaves (i.e. above C#6), it is not generally adequate to use simply a
higher blowing pressure and the same fingering as for a lower octave. Part of the reason is that the
lower-octave impedance minima are deeper than those at high frequencies, and are in addition
supported by one or more upper resonances in closely harmonic relationship. The fingerings used for
the uppermost octave are therefore designed to enhance the prominence of the desired upper-octave
resonance while at the same time reducing the height or shifting the frequency of competing lower
resonances. In hand-made classical wooden instruments, the maker may also introduce small
variations in bore radius at appropriate places to enhance these effects.

3. Materials and methods

3.1 The flutes
The modern flutes studied were production line instruments (Pearl PF-661, closed hole, C foot or B
foot). On this mass produced instrument, both the open and closed hole variants use the same 'scale'
(i.e. positioning of tone holes). For standard measurements, the position of the cork in the head joint
was set at 17.5 mm from the centre of the embouchure hole, and the tuning slide was set at 4 mm.
These values are typical values used by flutists playing at standard pitch.

The classical flute was made by Terry McGee of Canberra, Australia. The dimensions of the
instrument are based on those of a large-hole Rudall and Rose flute (R & R #655 from the Bate
Collection in Oxford) but the scale has been adjusted to play at 440 Hz. It has a head joint, a joint
with three tone holes closed by the fingers of the left hand, a further joint with three tone holes closed
by the fingers of the right hand and one mechanical key, normally closed, whose opening makes the
transition from E4 or E5 to F4 or F5. It has three interchangeable feet: one is a C foot in the classical
style, modelled on the Rudall and Rose instrument . Another is a D foot: it plays D4 with all holes
closed. The third foot is also a C foot, but its bore is larger than that of the classical foot, and the bore
increases slightly at the end. This foot was designed for use in Irish music, which often uses flutes of
the classical design. This flute is made of gidgee wood (Acacia cambagii).

Most measurements were made at T = 25±0.5°C and relative humidity 58±2%. Both of these values
are considerably lower than those in flutes being played, and thus the features of the measurements
here occur at frequencies about two percent lower than they would be on a flute being played (about
30 cents flat). We judged that correcting for a different value of the speed of sound was easier than
the inconvenience of operating at high temperature and humidity. Further, the temperature and
humidity are presumably functions of position in the flute being played, and these conditions are
difficult to reproduce in the spectrometer. (Cork and tuning slide position, temperature and humidity
were also varied to determine their effect on relative and absolute tuning, and on harmonicity. These
results will be discussed elsewhere.)

3.2 The impedance spectrometer
The impedance spectrometer is shown in Figure 2a. The signal is synthesized on a computer and
output via a 16-bit AD card (National Instruments NBA-2100) to a power amplifier and pair of
loudspeakers. An exponential horn (cut off frequency 200 Hz) matches the speaker to the attenuator.

The attenuator comprises a truncated conical plug located inside, and coaxial with, a truncated conical
hole. The two conical surfaces are spaced by three straight pieces of fine wire (diameter 120 µm)
placed at 120° intervals in the annular space between them. The input side is shaped as shown (Figure
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2b) to improve further the impedance matching. The choice of the output impedance of the attenuator
is a compromise between a high value, which improves the accuracy for high measured impedances,
and a low value, which allows a greater current, higher signal-to-noise ratios and therefore better
precision for low impedance measurements.

ADC1
 Mac IIci
computer

     impedance
matching horn

microphones

loud-
speakers

power
amplifier

computer-controlled preamplifiers

DAC

ADC0

acoustic
attenuator

impedance
        being
measured

embouchure
hole

acoustic attenuator

steel
tube

connection to
exponential
horn

acoustic attenuator

microphones

L c

microphones

connection to
exponential
horn

Figure 2. The impedance spectrometer (a) and the configuration for calibration (b) and for
measurement (c). The figure is not to scale.

Small electret microphones are mounted at either end of the attenuator. (Only the downstream
microphone is used for calibration and measurement. The upstream microphone is used in a
preliminary experiment to put an upper bound on the effect of reflections from the downstream end
the attenuator.) The output of the attenuator is a tube of 7.8 mm internal diameter, equal to that of our
calibration reference and slightly smaller than the embouchure hole of each flute.

Our reference impedance for calibration is a 'semi-infinite' cylindrical waveguide, a straight, stainless
steel pipe of 7.8 mm internal diameter. Its impedance is therefore purely resistive. Its length of 42 m
was determined by the width of the Physics building. At 200 Hz, a tube of this diameter has an
attenuation coefficient of 0.11 m-1 = − 1.0 dB.m-1 [3] so the echo returns with a loss of 80 dB or
greater. (The dynamic range of the instrument is a little greater than 80 dB, but the precision is less
than this. The echo returning during calibration coincides with a frequency component of the input
which is 80 dB or more greater, and so can be ignored.) Its impedance is therefore resistive, with
resistance equal to its characteristic impedance, Rref = 8.5 MPa.s.m-3. Swagelock fittings are used to
connect the elements. The 'semi-infinite' pipe is enclosed in a plastic pipe for sound insulation, and
the plastic pipe is mounted from the ceiling via rubber bushes. The use of a frequency independent
reference impedance improves the signal-to-noise ratio over the whole range, and obviates the need
for more than one microphone in routine calibration or measurement.

Before calibration, the desired dependence upon frequency of the acoustic current uref(f) is chosen. If
noise is distributed approximately equally across frequencies, it is advantageous to use a signal that is
frequency independent to achieve uniform signal-to-noise ratio. For these experiments, in which low
frequency noise was not a major problem, the acoustic current was therefore chosen to be
independent of frequency. A voltage waveform Vref(f), with a frequency independent harmonic
components over the desired range, was synthesized and input to the power amplifier. The acoustic
pressure is measured with the downstream microphone and sent via low noise preamplifiers, whose
gain is computer controlled, to the AD card. The pressure spectrum pref(f) is calculated. pref(f)
includes the frequency dependence of the AD card, amplifiers, speakers, horn, attenuator, other
plumbing and microphone. A calibrated waveform is then synthesised with Fourier components
Vcal(f) proportional to Vref/pref(f). This signal is then output, via the same elements, to the reference
impedance. The microphone now returns a calibrated spectrum pcal(f), in this case a 'flat spectrum',
i.e. a signal whose Fourier components are essentially independent of frequency. These pcal(f) are
recorded. The relative phases of the harmonic components of Vref are adjusted to improve
significantly the signal to noise ratios of our measurements [15].

Finally, the performance of the spectrometer was checked by measuring the impedance of a series of
open, stainless steel cylinders, for which the input impedance was calculated using the radiation
impedance as the termination at the open end [3], and values of the speed of sound from [16] (Figure
3). The theoretical curve is not shown because it obscures almost all points. The discrepancies
between theory and experiment occur when Z(f) approaches 100 MPa.s.m--3, where the finite output
impedance limits the precision, as discussed below.
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3.3 Correction for the finite impedance of the attenuator
For measurements of acoustic impedance very much less than that of the attenuator, the spectrometer
source may be approximated as an ideal current source and so the acoustic current equals uref(f). The
output of the attenuator is effectively in parallel with the system being measured, so the attenuator
conductance was subtracted from both calibrations and measurements. From the dimensions of the
attenuator we calculate a characteristic impedance for the attenuator Za = 170 MPa.s.m-3. The actual
impedance is likely to differ a little, because the spacing wires are not perfectly straight. We therefore
determine the value of Za by measuring known loads with high impedances, which in this case were
the first maxima in the impedance spectra of open stainless steel cylinders. This gives a value of
155 MPa.s.m-3. The attenuation of the travelling wave in the narrow space between the cones is
large, so the attenuator output is expected to behave like a pure resistance—another semi-infinite wave
guide. This assumption requires that the wave travelling from the output of the attenuator, back to the
input of the attenuator and then back to the output may be neglected. To check this, the upstream
microphone was used to measure the pressure waveform at the input of the attenuator during
calibrations (where the load was 8.5 MPa.s.m-3, independent of frequency) and measurements on
cylinders with strong resonances (where Z(f) varied from 20 kPa.s.m-3 to 200 MPa.s.m-3). No
measurable difference was observed, so the attenuation in this wave is sufficient to permit its neglect
in the measurements.

Thus the subtraction of the attenuator conductance should allow precise measurements less than about
100 MPa.s.m-3. This exceeds the maxima in Z(f) of the flute where, in any case, the minima are of
much greater interest. (For measurements on other wind instrument families, where the maxima are of
greater interest than the minima, the same technique may be used with a higher value output
impedance.)

3.4 Simulating the radiation impedance at the embouchure hole

As expressed in equation (1), the response of the flute to the driving force provided by an oscillating
air jet is inversely proportional to an impedance Z(f) that is the sum of the input impedance of the
flute tube as measured on a plane at the exterior entry to the embouchure hole plus the radiation
impedance of the embouchure hole measured on this same plane. Because it is relatively
straightforward to estimate the value of this radiation impedance, our approach involves replacing it
by the impedance of an appropriate short length of tube fixed to the exterior of the embouchure hole,
and then measuring the input impedance of the flute at the outer end of this tube.

The impedance head used here (Figure 2c) is designed to allow a measurement that, without any
further corrections, approximates the input impedance of the flute under typical playing conditions.
The dimensions are several mm and the frequencies of interest (< 3 kHz) have wavelengths longer
than 100 mm, so the plane wave approximation should be good at low frequencies and acceptable at
high frequencies.

As discussed above, the impedance head includes a short length of tube designed to compensate for
the effects at the embouchure hole under playing conditions. The radiation impedance of a baffled
pipe is approximately equal to that of an ideal tube with a length about 0.85 a, where a is its radius.
In the absence of the player's face, the radiation load at the embouchure would therefore be
approximately that of a pipe with the same area and length 0.85 a. In practice, the equivalent length
is longer because the player's lower lip occludes part of the hole and his face acts as a baffle,
reducing the solid angle available for radiation.

Let the player's lips leave open a fraction g of the hole, and assume that the face leaves open a
fraction h of the solid angle available for radiation. The radiation impedance would then be

Zrad  =  
0.85a jωρ
√ g hSemb

(2),

where Semb is the area of the embouchure hole (about 90 mm2). We use a pipe with smaller cross-
section than the embouchure hole so that positioning of the impedance head is not critical. The
impedance Zc of the coupling section of the pipe that is to simulate the radiation load, is
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Zc  =  
jωρLc

Sc
  =  Zrad  =  

0.85a jωρ
√ g hSemb

 (3),

where Lc is the length and Sc the cross sectional area. We use a value of 6 mm for Lc. This is chosen
empirically so that, at the corresponding temperatures and humidities, the impedance minima correspond to
the played notes. Therefore

h√ g =  
0.85a

Lc
 

Sc
Semb

   =  0.3 (4),

which approximately corresponds to g = h = 0.5.

The effect of changing g and h can therefore be simulated by changing Lc. Further, this can be done
theoretically using the transfer matrix for a cylindrical pipe where, for this length, losses may
reasonably be neglected [3].

3.5 Measuring Z(f)
The impedance head, including the microphones and attenuator, were connected to the flute via the
adaptor shown in Figure 2c, which is acoustically equivalent to a cylinder, of the same radius as the
calibration cylinder and 6.0 mm long. This load may be removed by calculation from the resultant
measurement, but its dimensions were chosen from considerations of tuning. (It also gives an
impedance equivalent to that of the radiation impedance of the embouchure hole under typical playing
conditions: see the previous section and [17] for more details). A thin gasket made of flexible casting
compound (Wacker Elastosil M4503, Barnes, Sydney) is used to seal the measurement head to the
flute.

The reference signal is applied to the flute and the Fourier components pmeas(f) are then measured.
The total admittance pcal(f)/(pmeas(f).Rref) is calculated, the attenuator conductance is subtracted to
give the flute admittance. When measurements are finished, the spectrometer is reconnected to the
reference impedance and a measurement is taken to compare with the calibration.

Background noise in the laboratory, although rather quiet, could affect measurement of the weak
pressure signals at the impedance minima. For this reason, the musical instrument, or other load to be
measured, was placed inside a rigid box, which was lined with acoustically absorbent materials to
minimise resonances of the box. The operator (who is also a flutist) passed his arms through rigid
'sleeves' on the box to finger the instrument and triggered measurements with a foot control.

3.6 Sound recordings
Because sound spectra depend very strongly on parameters determined by the player, by the radiation
pattern of the flute, and by recording conditions, sound spectra recorded for human players can only
be regarded as examples. The obtaining of examples typical of playing by a flutist under realistic,
musically comfortable conditions are not consistent with obtaining exactly repeatable spectra. Sound
spectra were measured at a distance of about 1 m directly in front of the player in a room that was
moderately quiet and with little reverberation. The player, Geoffrey Collins, is one of Australia's
foremost flutists. The notes were written out in traditional musical notation, with dynamic markings
ff, mf and p. Where the fingerings were not standard, they were indicated using a fingering diagram
of the sort shown in Figure 1. For the classical flute, he used the McGee instrument described above.
For some of the notes on the modern flutes, he used the Pearl flutes discussed above. For the rest of
the notes and multiphonics on the modern flute he used one of his own flutes, which is a hand-made
Brannen-Cooper flute with a Nagahara head.

4. Results and Discussion

Before discussing the impedances of flutes with their complicated geometry, we present a
measurement of the acoustic impedance measured on a simple cylindrical tube made of stainless steel
(Figure 3). The error bars in frequency are smaller than the points. Where the slope is least, the points
appear to make a continuous line and so the error bars in Z, typically a few tenths of a dB, are omitted
for clarity. For convenience, these impedances are plotted on a logarithmic scale analogous to the
decibel scale for pressure, using the relation:

Z(dB)  =  20 log10 
Z
Zo

     where Zo = 1 Ω  =  1 Pa.s.m-3 (5).
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Figure 3. Z(f) for an open, stainless steel cylinder of length 596.7 mm and diameter 7.8 mm.

As for the flute, the measurements are made only above 200 Hz, which is the cut off frequency of
our horn. The mean value of the impedance is determined by the characteristic impedance (here
8.5 MPa). The minima and maxima in Z(f) occur approximately at frequencies of

fmin  =  n 
c

2L   and fmax  =  ( )n  −  
1
2

 
c

2L (6),

where n is a positive integer, c is the speed of sound and L is the length of the pipe. (More precisely,
L includes a small end correction with a weak dependence on frequency.) The size of the maxima and
minima gradually decreases with frequency because wall losses become successively more important.
The expression for Z(f) is given by [3].

Figure 4. Z(f) (phase in degrees and magnitude in dB) for a modern flute (left) and a classical
flute (right) for the note C4.

Figure 4 shows Z(f), the acoustic impedance of a modern flute with a C4 foot for the fingering for the
note C4. The magnitude (Z) and the phase φ are shown separately. To zeroth order, a flute is a
cylindrical pipe and so, with all its keys closed, its impedance spectrum resembles qualitatively that of
the simple pipe. Because the input is open to the atmosphere, the air jet excites modes with large air
flow and modest variations from atmospheric pressure. Thus the operating frequencies are the minima
of Z (≡ |p/u|). For the configuration with all tone holes closed, these minima are in the harmonic series
(equation 6). For the flute, the maxima are irrelevant. One could also say that, to zeroth order and
with the bell removed, a clarinet is also a cylindrical pipe, and so its input impedance should also
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resemble that of a simple pipe. And so it does (data not shown). The difference is that, because its
input is closed by the reed, mouthpiece and the player's mouth, it operates near the maxima in Z(f).
Its spectrum has predominantly the odd harmonics (the second equation (6)) and its fundamental is
approximately an octave lower than that of the flute. (The first maximum is not shown in Figure 3
because it lies below the frequency range of the measurements, but the reader may readily extrapolate
it.) The length of pipe used for Figure 3 is comparable with that of the air column of a flute or a
clarinet.

The most important geometrical difference between a simple cylinder and the modern flute configured
for C4 is that the flute is excited, and therefore here measured, at the embouchure hole, whose centre
is 17.5 mm from the closed end. This hole is connected to the bore via a transverse, tapered hole.
This embouchure hole has a considerably smaller cross section than the instrument. Further, the
closed tone holes each have a little volume added to the side of the bore and the head joint of the
modern flute is not cylindrical but tapered to a smaller diameter near the embouchure hole (see Figs 1
and 5). However, we shall begin by discussing the qualitative shape of Z(f).

Figure 5. A simplified acoustic model of the flutes in the configuration to play their lowest notes

The shapes of Z(f) for the flutes have many similarities to that of a plot of Z(f) for a simple cylindrical
pipe. The main differences are (i) the maxima do not fall half-way between the minima, as they do for
the simple cylinder; (ii) the envelope of Z(f) rises gradually at frequencies above about 2 kHz; and
(iii) the maxima and minima become smaller more rapidly with frequency than they do for a cylinder
of the same size. All of these are explained by the geometry shown in Figure 5. The 'chimney'—the
relatively narrow hole at the embouchure—has a larger characteristic impedance than the flute tube
itself. This has greatest effect on the impedance minima, where there is largest flow in the chimney. It
has the effect of making the minima occur at lower frequencies than they otherwise would (which
makes them asymmetrically distributed with respect to the maxima) and reduces the depth of the
minima at higher frequencies. Further, the chimney tube plus the closed end of the flute tube together
constitute a Helmholtz resonator, this is in parallel with the rest of the instrument. Its impedance rises
with frequency, and it has a resonance at several kHz, which then dominates the Z(f) curve. It also
decreases the frequencies at which the minima occur.

With this fingering, the flute will can be made to play a series of notes at frequencies near to the first
several minima in this spectrum, by adjusting the speed and geometry of the jet. As the minima
become shallower, and as the required jet speed increases, the notes in this series become harder to
play. The minima are almost exactly harmonic and so the playable series is C4, C5, G5, C6, E6, G6,
A‡6, C7, where ‡ means a half sharp: the seventh note in the series is between A6 and A#6, slightly
closer to the latter. Normally, this fingering is used only for C4, and other fingerings are used for the
higher notes.

The vibration of the jet is periodic but not sinusoidal. Hence, when C4 is played with this fingering,
several harmonics are present in the sound, and these have spectral components at frequencies
corresponding to the minima, as shown in the figures in the data base in JSV+. The harmonicity of
the series of minima is important in determining the stability of the vibration régime, as discussed
above.

The displacement of the embouchure hole from the end of the flute has important effects on tuning.
As far as input impedance is concerned, the flute as a whole may be considered as a short 17.5 mm
closed tube (the closed part of the bore) in parallel with the rest of the bore. These two relatively large
diameter tubes are in series with the relatively narrow embouchure hole (Figure 5). This is
responsible for the gradual rise of Z(f) at high frequencies.

Figure 6 shows a configuration that illustrates several features relating the fingering pattern to the note
produced. The first fingering shown (i) is the standard fingering for the notes G4 and G5. The eight
lowest tone holes are open and the effective length of the flute is approximately half the wavelength
required for G4 (frequency fo = 392 Hz). The flute readily plays G4 in this configuration. By using a
higher blowing pressure and changing the embouchure, it will also play 2fo (G5), 3fo (D6), 4fo (G6)
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and 5fo (B6). The pressure standing waves for the first three of these are shown in simplified form.
In practice, a single tone hole is not an acoustic 'short circuit' and the standing wave extends a little
way beyond the first open hole. It is difficult to play D6 softly in the configuration shown in (i). The
standard fingering for D6 opens a hole (indicated by the arrow) at about two thirds of the effective
length, as shown in (ii). This favours a pressure node and facilitates playing D6, and makes it
impossible to play G5 or G4. The fingering (ii) does, however, allow the playing of the note C5,
with a half wavelength that is 2/3 the half wavelength of G4, as shown in the sketch. (ii) is also a
multiphonic fingering, because it is possible to play C5 and D6 at the same time using this fingering.
With this fingering, one can blow softly and produce C5, gradually increase the blowing pressure
until the multiphonic sounds, then continue increasing the pressure until the C5 disappears leaving a
pure-sounding D6 (whose spectrum may nevertheless show a very weak signal at C5). Fingering (i)
is not a multiphonic fingering: if one played G4 and G5 at the same time one would be playing G4,
because the harmonics of G5 are a subset of those of G4. Multiphonics are discussed in more detail
below.

Figure 6. The fingering and acoustic schematics for (i) G4, G5 or D6 and (ii) C5 or D6 or the
multiphonic C5&D6.

Figure 7 shows the acoustic impedance of the two configurations shown in Figure 6. Note that the
impedance curve for the fingering for G4/5 has minima at approximately fo (= 390 Hz), 2fo, 3fo, 4fo,
5fo and 6fo for the note G4. The even members of this series are of course the first three harmonics of
G5. The opening of the extra hole at about two thirds of the effective length (ii) displaces the first two
minima so that the minima are no longer in a simple harmonic series. The first minimum is at the
frequency for C5, the third is (still) at the frequency for D6. With this fingering, low blowing
pressure and an appropriate embouchure, the flute will play C5 and D6 at the same time. Pressure
spectra and sound files are in the JSV+ attachment.

Figure 7. The input impedance Z(f) for the cases described in Figure 6.
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Multiphonics
Some of the unusual fingerings listed by [9] produce sounds termed multiphonics, in which a chord-
like effect is heard. In these cases, the impedance curve has two or more deep minima, the
frequencies f1 and f2 of which are not close to being in simple small-integer ratio. If the player uses a
wide air jet, then it is possible to excite both resonances simultaneously, giving two notes, but the
effect does not stop there. The two basic tones react back on the air jet which, because its interaction
with the flute tube at the embouchure lip is nonlinear, generates excitations at frequencies that are
multiple sum or difference frequencies nf1 ± mf2 where n and m are small integers. This can happen
only if the two basic frequencies are not very close to being in an harmonic (small integer)
relationship [18]. A simple multiphonic is shown in Figure 7, at right. Further examples, including
sound spectra and sound files, are given in the JSV+ data base.

General observations about impedance spectra.
In all the flute+foot combinations we studied, these generalisations hold:

1)  With all of the holes closed, the impedance spectrum has about ten sharp minima. Their
frequencies are close to harmonic ratios (see figure 4). These minima correspond to standing
waves or resonances in the flute when played.

The depth and sharpness of the minima in Z(f) decreases more-or-less smoothly with
frequency. The resonances corresponding to these minima in Z(f) can be played by
overblowing, but this becomes more difficult as the minima in Z(f) become shallower and
wider. For instance, on the Boehm flute, the 8th resonance is substantially shallower than the
7th; and one notices that the 8th harmonic is substantially harder to play than the first 7.

Further, harmonic minima in the Z(f) spectrum are well aligned in frequency with harmonic
peaks in the sound spectrum.

2) As holes are opened successively from the foot, the number of sharp, nearly harmonic
resonances decreases (data in JSV+). At frequencies above about 2 or 3 kHz, Z(f) shows
several very shallow minima, which are not in general harmonics of the low frequency minima.
This is explained due to the filtering effect of the tone-hole lattice downstream from the lowest
closed hole, as discussed above. Further, some of the minima in the low frequency end become
slightly displaced from harmonic values.

The effect of this on the playing of these fingerings is that (i) it is harder to overblow the higher
members of a harmonic series, and (ii) the low notes played with these fingerings have less
power in the high harmonics, even when the player attempts to produce a uniform sound
(compare the sound and impedance spectra in JSV+.) All else being equal, deeper minima in
Z(f), which are harmonics of the fundamental, correspond to stronger harmonics in the sound
spectrum of the fundamental note. This is most clearly shown when alternative fingerings give
different relative depths for different harmonics. For a striking example, see the sound spectra
for different fingerings for A4 on the Boehm flute. For a more subtle example, see the variant
fingerings for A#4/5. These spectra, and the sound files, are in JSV+.

Comparing the Boehm flute with the classical flute
1) Even with all tone holes closed, the classical flutes have Z(f) spectra in which, while the low

resonances are roughly as deep and as sharp as those on the Boehm flute, the higher resonances
are significantly less deep and sharp (Figure 4).

2) The difference between 'all holes closed' and 'n holes open' is greater on the classical flutes
than on the Boehm flute. One might informally say that, because the Boehm flute has more and
bigger tone holes, opening up the holes on a Boehm flute is closer to 'sawing the end off',
whereas the smaller and more widely spaced holes on the conical flutes have a greater effect
when they are open downstream. This gives rise to the more mellow and less homogeneous
timbre of the classical flute, as discussed above.

Comparing the classical flutes with D foot and with the C feet
For the C foot flute with all tone holes closed, Z(f) has 9 or 10 sharp, roughly harmonic minima
starting with C4 (fig 4). With the D foot in place there are also 9 or 10 sharp, roughly harmonic
minima in Z(f), but they are the harmonics of D4 rather than C4. When the two flutes are compared
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on fingerings for the same note, then the longer flute, which has more tone holes open, shows to a
greater extent the effects (discussed above) of open tone holes. The effects of the more open C foot
are rather subtle on notes from D4 and above. See the many examples in JSV+.

Technical observations regarding the performance of flutes
The design of a flute is a compromise. For each note over a range of three and a half octaves, the
instrument should produce a Z(f) with a narrow, deep minimum at the fundamental frequency of that
note. Further, for the notes in the lower part of the range, the harmonics of the note should also
coincide with minima in Z(f). Additionally, there should be no other deep minima near that of the
desired fundamental. For the highest notes, this is difficult to achieve because of the shallowness of
the minima at high frequency (as shown in the Z(f) for the notes in the fourth octave in the JSV+ data
base). As a result of this and of high speed of the air jet required, the highest notes are difficult to
play quietly  Yet another complication is that the instrument should enable the player to make a
smooth transition between a note and almost any other. An example of how this may be difficult, and
how it is overcome, is shown in Figure 8.

Figure 8. Impedance spectra for the note E6, without (left) and with a 'split E mechanism' (right)

The note E6 can in principle be played using the third impedance minimum in the configuration used
for A4 and A5 (data in JSV+), but the third miminum is not very deep and it is easy for the player to
misjudge the blowing pressure (particularly when playing softly) and to sound A5 instead. So
instead, a cross fingering is normally used. The same fingering produces one of two different
acoustic configurations according to the design of the flute. A 'split E mechanism' has a clutch which
closes one extra tone hole in this fingering, and such a mechanism is available as an option on many
flutes, where it facilitates playing E6 softly and slurs (uninterrupted transitions) between A5 and E6.
The E6 fingering can be thought of as a variant of the fingering for A4, but with three or four
downstream holes closed (see Figure 8). The flute does indeed play A4 and a note a little lower in
pitch than A5 (called A5 − δ on the graph) in this configuration. It may also be considered as the
fingering for E4, but with one or two register holes open, about one third of the way along, to
facilitate the third harmonic. Compare the Z(f) for E6 without and with this mechanism. Without the
split E, the third minimum is considerably less deep than the second, and hardly deeper than that of
the fourth. Thus skill and reliable judgement of blowing pressure is required to sound the E6 rather
than A6 or A5 − δ, particularly in soft playing or in fast, slurred, leaping passages. With the split E
mechanism, the third minimum is deeper and the fourth less deep. Further, the second minimum is
both less deep and further out of tune, so it no longer has a nearly harmonic relation to the fourth
minimum. It is therefore much less likely so sound A5, so the E6 is more stable in soft playing. There
are further complications when slurs from E6 to A6 are required, and these can be overcome with use
of another downstream key (data not shown).

Sound files
The impedance spectrum depends almost entirely on the flute, but the sound spectra depend on many
things. Most importantly, they depend on the player and on various parameters under his/her control.
They depend on the way in which the note is played (loudness and timbre), as well as on the response
of the room and on the relative position of the microphone and the instrument. They also depend on
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parameters used in calculating the spectrum such as the sample window used and the relative phase of
the sound vibration and the sampling. There is therefore no "standard" sound spectrum for any note.
It is also worth noting that the sound spectrum is only one of the things that determine the timbre of
the note, so that one cannot easily get an idea of the sound of the note from just the spectrum
(particularly one also needs to know the starting and finishing transients and the way the spectrum is
affected by the vibrato). The sound files and sound spectra are recordings of an eminent professional
flutist, using the flutes described in the Materials and Methods section.

Futher data analysis and discussion
Particularly in higher registers there are many technical problems such as those discussed in relation
to Figure 8, and in many cases they can be explained in terms of the measured Z(f), or by comparing
Z(f) with with the sound spectrum p(f) for the note. This is perhaps of greater interest to flute players
and makers than to most readers of this journal. When combinations of pairs of notes are considered,
and when different fingerings and flute designs are possible for each note, the number of possibilities
is very large. For this reason, we maintain an interactive web page with a diagrammatic fingering
chart that allows flutists and makers to discuss such problems and to suggest further investigations
beyond the several hundred graphs available in JSV+. Following publication of this article and data
resource, we intend to maintain the web site (www.phys.unsw.edu.au/music/flute) and to use it for
extensions and additions to the data base held by JSV+.
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