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Structure and Energy of Crystal Interfaces
II. A Simple Explicit Calculation

By N. H. FrercERT
H. H. Wills Physics Laboratory, University of Bristol

[Received 1 November 1966, and in revised form 13 March 1967]

ABSTRACT

The variational method developed by Fletcher and Adamson is applied to
calculate the energy of the interface between (100) faces of two cubic crystals
for arbitrary relative twist displacements and for lattice parameter ratios
between 0-6 and 2-0. A simplified interatomic potential is used for this
calculation and this shows only a small number of cusped energy minima.

§ 1. INTRODUCTION

Ix the first paper of this series (Fletcher and Adamson 1966, to be referred
to as I) a new method was developed for calculating the energy of an
interface between two crystals of arbitrary crystal structure and relative
orientation. Briefly, the method consists of bringing the two crystals into
contact and then varying the positions of all the atoms near the interface
until the total energy is a minimum. The method is designed to use
realistic interatomic potentials and its main innovation consists in per-
forming all manipulations in reciprocal space. This not only greatly
reduces the number of variational parameters required in computation but
also leads to an elegant theory from which many general features of the
behaviour of interfacial energy can be deduced.

The development given in I was purely formal and it is the purpose of the
present paper to present the results of a “ worked example’ using a very
simplified interatomic potential to demonstrate the scope of the method.

The potential used is not closely related to any real interatomic potential
and was chosen in such a way as to reduce the computational effort involved.
The computed results are therefore not directly applicable to any real
materials, though broadly similar behaviour may be expected. What is
demonstrated is the feasibility of such calculations using the present
approach.

§ 2. THE INTERATOMIO PoTENTIAL )
Consider a crystal of material A whose atoms have nearest—nmghbour

distances ¢ and a crystal of B with nearest-neighbour distances b. The
theory set out in I is based upon the interaction potential v,5(r) between
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A and B atoms separated by a distance r. In practice such a potential
might be a Lennard-Jones (12, 6) interaction in the case of rare-gas solids
or a more complex oscillatory function (Ziman 1964, Harrison 1966) in the
case of metals. These potentials present difficulties from the point of
view of an exploratory calculation in that '
(i) their extension in real space is great enough that second-neighbour
interactions must be considered,

(ii) their extension in reciprocal space (due to the very sharply repulsive
core) is rather large so that a considerable number of variational
parameters should be used for an accurate solution.

Whilst both of these difficulties can be overcome within the theory
of I at the expense of increased computer time, we have chosen rather to
perform the calculation using a potential whose range in real space is
short enough that only interactions with atoms lying in neighbouring planes
parallel to the interface need be considered and whose repulsive core is
not so hard as to give a very great extension in reciprocal space.
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(@) The Fourier transform of the potential assumed for this calculation and
given by eqn. (3), drawn for the case b=a. (6) This interatomic
potential in real space.

To be explicit, the Fourier transform of the potential used in I is defined
by:
v(k):Q"lf exp(—ik.r)o(r)dr, . . . . . (1)
which can be integrated over angle to give :
o(k) = (dr/kQ) f sin (kr)o(r)rdr. . . . . . (9)
, 0

The form. chosen for this potential is given by the transformed function :

'2)(70@/277) = const x (ﬁ:;bf {exp [2:5% (a+b) — 4-0]+ 1} (3)
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for 0 < k/2m <3-5/(a +b) and v(ka/27) = 0 for larger k. This transform gives
a potential v(r) which has a minimum, of depth independent of &/a, at
r=%(a+b). The form of the potential and its representation in reciprocal
space are shown in fig. 1. The constant in (3) is assigned the numerical
value 5-8 to give a convenient scale for the interfacial energy.

§ 3. T CRYSTAL PROBLEM

To define the problem we must specify the structures of the two crystals
and their orientations relative to the plane of the interface. We have
chosen to calculate the case of two simple cubic crystals with lattice
parameters ¢ and b respectively in contact on (100) faces and rotated
through various angles about an axis normal to the interface. Again this
- represents an oversimplified situation not met in practice.

Fig. 2
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The potential, in units of 1/a?, experienced by an A atom at the point (z, y, 2)
just outside an @y surface of a crystal of B when b=a, for 2h=23a (full
lines) and 24=10a (broken lines). The curves show the potential
profiles above three different (z, y) positions.

In I it was proposed that the calculation be simplified by supposing the
potential just outside a crystal to repeat with a spatial period 24 normal to
the interface instead of extending to infinity, thus reducing an integral-
over k components normal to the interface to asum. Thisis clearly valid
if A is much greater than the range of the potential but, to speed computa-
‘tion, & should be as small as possible.

Figure 2 shows potential profiles normal to the surface when a=>5 for
three different atomic positions and for 24 =3¢ and 2k =104, which latter
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value approximates the result for 2h=o00. It is clear that, within the
important region near the potential minima, 2k = 34 gives a good approxi-
mation to the true potential. This value is used in the calculation in the
generalized form :

2h=15(a+b). . . . . . . . (4

In the theory of I the elastic strain problem was simplified by defining .

three elastic moduli for each crystal, denoted by 7, and 5, respectively. To-
further simplify the present calculation we assume 7, =7,=7,=7 and
' =my =n3'='. If we assume that v,, () and vgp(r) have the same
general form as v, () then we can write:

n=Mla®; »'=M[PB:, . . . . . . . (B)

where M is a constant. From the potential curves of fig. 2 we deduce that
M is of the order of a few hundred in the energy units we are using so, for the
present calculation, we assume M = 500.

§ 5. NumerIcAL RESULTS AND DISCUSSION

The computer programme minimized the total energy of the system, as
given by eqns. (22), (19) and (21) of I, by successive minimization with
respeet to the distortion parameters, beginning with those of smallest K.
The process converged rapidly and the programme, run on an Elliott 503
computer, took about 5 min per point, the number of variational parameters
ranging from 3 to about 18. The computed results are summarized in
figs. 3 and 4. The energy calculated is the total interaction energy of the
two crystals, per unit area of interface, taking as zero the energy of the
two separated crystals.

The computed results show a general similarity to those which have been
derived using dislocation theory (Read and Shockley 1950) or a simplified
interface model (Van der Merwe 1950). There is a sharply cusped energy
minimum for exact matching (b =¢, §=0) and subsidiary cusped minima
forb=+/20 ora/4/2,0=45°. Crystal symmetry, however, is automatically
included -in the present calculation and there is exact 4-fold rotation
symmetry. '

It is interesting to note that, at any rate with this potential, the energy of -
a simple twist boundary (b/o=1-0 in fig. 3) is essentially independent of
angle for twist angles between 30° and 45°. This is in agreement with the
conclusions of Van der Merwe, whilst the dislocation model of Shockley and
Read (extrapolated beyond its range of validity) predicts a maximum
energy for a twist of rather less than 30°. ’

Finally, the energy has no appreciable cusped minima except those noted
above. This is a true result for the potential considered and is due to the
softness of the repulsive core. As shown in the general theory in I, such
subsidiary minima have magnitudes determined by w(k) for reasonably
large k so that they will be more pronounced with a more realistic potential.
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Twist angle in degrees

Energy, in units of 1/a?, of a twist boundary of angle 6 between two crystals
with lattice parameters ¢ and b respectively.

Fig. 4
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Energy, in units of 1/a® of a boundary between two crystals with lattice
parameters ¢ and b for boundary twist angles of 0° and 45°.
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