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Nonlinearity, transients and spectra

N H Fletcher

Abstract

The role of nonlinearity in generating the steady spectrum and- defining the transient behaviour of mus1cal
instruments is discussed. A simple theory for analysing, in the time domain, a multimode inharmonic system
driven by a nonlinear self-excited generator is presented and it is shown that this can lead to a mode-locked
harmonic regime, a muluphomc regime, or even chaotic oscillation. The theory is apphed to discuss the steady
state and transients in bowed—stnng, woodwind and brass instruments. Brief reference is‘'made to impulsively

excited instruments.

Inu'oductlon

Many of the design and pexfoxmance aspects of
musical instruments can be understood on the
basis of linear theory, and indeed this theory is
perfectly adequate to treat in detail the resonances
and radiation properties of the air columns in
wind instruments and the complex bodies of
stringed instruments, although this is not generally
true for percussion instruments such as gongs and
cymbals. The excitation mechanism in sustained-
tone instruments is, however, intrinsically
nonlinear, and most of the mechanisms that
determine radiated power, acoustic spectrum, and
transient behaviour rely upon this nonlinearity.

A sustained-tone  instrument  consists

essentially of a linearly-behaved resonator,
coupled at one place to a nonlinear driving
mechanism, and at another place to a linear,
though possibly complex, radiating mechanism.
The nonlinear exciter is itself supplied with steady
power by the player, either in the form of
mechanical motion or of air at more than
atmospheric pressure. Each stage of this system
is coupled back to earlier stages, the ultimate
control coupling being between the radiated
sound, which typically constitutes less than one
percent of the input mechanical power, and the
ears of the player.

In this discussion I want to concentrate on the
way in which the nonlinear driving mechanism
excites the linear primary resonator and the strong
.coupling between these two, for this determines
the basic behaviour of the instrument. Once this

is understood, the remainder of the system is .

nearly linear and has essentially a passive filtering

490

action. There has been a great deal of progress
made in this understanding in recent years, largely
on the basis of time-domain computer simulation
methods (Mclntyre et al, 1983). Here I want to
take a different approach and treat the problem in
the frequency domain in terms of excitation of the

" normal modes of the resonant system. I make no

claim that this method is superior, but it is
complementary and gives different insights into
the behaviour of the system.

General theory

The behaviour of any linear system, such as a
vibrating string, an air column or a metal bell, can
be described in terms of its normal modes or
characteristic vibrations &,(r,#) where & might
be a displacement, a velocity, a pressure or a
flow, depending on the system considered. These
modes have shapes and frequencies that can be
measured, or calculated once the shape and elastic
properties are defined. Because the system is
linear, any possible free vibration that it may
undergo can be expressed as a superposition of
these normal modes, oscillating sinusoidally at
their natural frequencies but with amplitudes and
phases that depend upon the initial excitation.
The vibration x of the system at a particular point
r' can therefore be written

x=Yx, =2a,.sin(m,,r+¢,) M

where x,=&,(r',t) is the contribution of mode
n at this point.



When this simple system is coupled at the
point r' t0 a generator producing an excitation
F(x), each mode responds as a simple oscillator,
and can be described by an equation of the form
X, +k,X, +0ix, = F(x) @
where k is a damping coefficient. I have written F
as possibly a function of the variable x at the
excitation point, because I -want to allow for
feedback. In a musical instrument we must have
such feedback, because the excitation supplied by
the player is simply a steady force and cannot
excite vibrations. The function F(x) can be quite
complicated and involve phase shifts and time
delays. Any part of F that is in-phase with x, will
influence the damping of the system and cause the
amplitude of mode » to grow or decay, dependmg
on its sign and upon the intrinsic damping k,,
while any component of F that is in-phase with X,
will shift the response frequency of the mode
away from ®,. We can formalise this by
assuming that the amplitudes g, and frequencies
®, of the mode functions X, in (1) are actually
functions of time. Rather than changing o,
however, if is better to assume that the phase 9,
varies with time, so that the response frequency of
mode n becomes ®, +(dd, /dt). We can then

do some algebra to sort out the parts of F that are
in-phase with X, and x, respectively, to get

F(x) = Zc,.x"

=Ycyalal... sin[(pw, tqm, t...)t]

- (5)

The second form of writing shows that there is a
complex mixing of frequencies of all orders
caused by the nonlinearity. Since these terms all
enter into (3) and (4), all equations of the set are
coupled together in a comphcated way by the
nonlinearity.

Although we are concemed here primarily with
sustained-tone instruments, it is worthwhile to
note that equations (1)—(5) apply equally to
1mpuls1ve1y—ex01ted systems. The only difference
is that F no longer involves an external energy
supply but simply describes the nonlinear
interactions between modes following their initial
impulsive excitation to prescribed amplitudes.

Study of (3) and (4) shows that three possible
types of steady-state behaviour, or regimes of
oscillation as Art Benade called them, are
possible.
® The harmonic regime, in which all mode
frequencies are shifted by the nonlinearity to
become exact integer multiples of the fundamental -
frequency, and locked together in phase (Fletcher,
1978). This is the normal sounding regime of
musical instruments.

- ® A multiphonic regime, in which, generally

‘Z o)"(F(x)cos(co t+0,))-ka, (3)
%: (Fysin(@,r+6,))  (4)

where the brackets (...) imply that we take an
average in such a way as to retain only terms that
vary slowly relative to ®,. This reflects the fact
that each mode will respond only to excitation
approximately matching it in frequency.,

~In any sustained-tone instrument F(x) is a
nonlinear function of x, as we see presently from
examples, so that the situation represented by the
large set of equations (3) and (4) is actually very
complicated. For any nonlinearity that is not too
extreme, F can be expanded as a series
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because of use of peculiar fingerings and modified
blowing, several strongly-excited modes are too
far from harmonic relationship to be locked
together by the limited nonlinearity. These modes
then oscillate at nearly their natural frequencies,
but the nonlinearity generates multiple sum and
difference frequencies according to (5) giving a
“multiphonic” sound, sometimes favoured by
modem composers (Keefe & Laden, 1991).

¢ A genuinely chaotic regime, in which the sound
has an unpleasant rasping quality. This is
exemplified by the harsh "crow" of an isolated
double reed, but can rarely be produced on an
assembled instrument. Chaotic oscillation does,
however, occur in nonlinear percussion
instruments such as cymbals (Fletcher, 1993 b).



Musical instruments ;

Figurel shows the nonlinear excitation
characteristics of three common types of musical
instruments—bowed ~ strings,  reed-driven
woodwinds, and air-jet excited instruments. The
physical basis of these curves is familiar and has
been discussed in detail elsewhere (Fletcher &
Rossing, 1991)—the bowed string characteristic

depends essentially upon the difference between

static and dynamic friction, the reed characteristic
upon Bemoulli. flow through an aperture which is
itself controlled by the pressure difference across

it, and the jet flow by the velocuy proﬁlc of the

‘deﬂected jet. All have a negative slope near the
operanng pomt 0, and this corresponds to a
negative res:tstance which subtracts from the
natural damping factor k, and, provided the
magnitude of the first term of (3) is greater than
k,a, for some mode, generates a self-sustained

oscﬂlauon. The amphtude of posmble osmllatmn,
however, is limited in all cases: in the case of the
bowed string by the bow velocity, in the case of
ﬂlereedby 1tsclesmg, and in the caseofthejetby
its passing entirely into or out of the pipe lip.

In instruments such as the clarinet and the flute
which can sustain small-amphmde vibrations, the
harmonic structure of the excitation is described
initially by the sma]lanonhneamy expression 6)—
the fundamental is ‘dominat andlheamphmdeof
the ath harmonic is propomonal to the nth power
of the amplitude of the fundamental. This result,
well known in nonlinear theory, was first
remarked upon in relation to clarinet sound by
Benade's student Worman (1971).

~ The bowed—stnng nonlinearity is more extreme
than the other two—it exhibits a dlsconunu;u,y in
the force 1tself while the reed ‘shows a
discontinuity in the derivative of the force and the
jet a discontinuity in the second derivative.
Furthermore, the slope of the frictional
characteristic of the bowed string is such that the
steady amplitude always reaches the discontinuity,

* 5o that there is no regime of "small nonlinearity"

and the excitation function has a switching-type
discontinuity, ~which ~implies an excitation
spectrum which rolls off at 6dB/octave at high
frequencies. This is modified, of course, by the
resonant response of the instrument body and by
_its radiation efficiency, but the general limiting
spectral shape is clear in the sound as well.

Double-reed conical woodwinds, such as the

oboe and bassoon, also tend to traverse the whole
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Figure 1I: Nonlinear  excitation
charactensucs of (a) a bowed strmg, (b) a
reed generator and (c) an air jet generator.
The operanng point is set near O in each
case, and the large-szgnal switching
behaviour is between points A and B. In (a)
there is a. dzsconnnuuy at B when the string
velocity equals the bow velocity; in (b) there

- is a discontinuity of slope at B when the reed

closes; in (c) there may be a discontinuity in
curvature near the edges of the jet at A and
B.



range of reed motion up to closing, since the slope
of the characteristic at normal blowing pressures
increases with increasing oscillation amplitude.
Because there is a discontinuity only in the slope
of the excitation function on closure, this leads to
- a limiting spectral roll-off of 12dB/octave, though
a "soft" closure could increase this to
18dB/octave. Again this must be modified by the
mode tuning of the instrument at low frequencies
and by the radiation characteristics, including the
tone-hole lattice cutoff at high frequencies. This
radiation characteristic reduces the amplitude of
the lower harmonics of each note in the radiated
sound. -
Single-reed cylindrical woodwinds, such as the
clarinet, have rather different properties because
the air column resonator responds only weakly to
the even harmonics of the excitation. This causes
the reed vibration to be nearly symmetrical about
the operating point and makes it possible to
sustain low-amplitude vibrations without closure
of the reed. The instrument can therefore exhibit
the small-nonlinearity behaviour noted above. As
the dynamic level is increased the reed comes
closer 1o closing, though the curve of the lay
probably makes this always a soft closure with
consequently greater rolloff at high frequencies.
Instruments such as the flute, excited by an air
jet, have an even softer nonlinearity when they are
blown vigorously enough to exhibit switching
behaviour. Viscous eddy diffusion ensures that
_ the velocity profile of the jet has at most a
discontinuity in its second derivative, so that the
simple theory of jet excitation, which depends
upon jet volume flow into the pipe, predicts a
rolloff of at least 18dB/octave at high frequencies.
Again the total radiated spectrum is modified by
the radiation characteristics of the finger holes.

In real situations various other effects enter to
smooth off the discontinuities and further reduce
the amplitudes of the extreme higher harmonics in
the radiated spectrum.

- Transients

Equations (3) and (4) can describe the transient as
well as the steady-state behaviour of musical
instruments, and indeed they are primarily
adapted to do just this. There is always some
impulsive excitation when a player begins a note,
if only because the bow begins to move, or the air
jet to flow, more or less abruptly. This always

excites all the normal modes of the resonator to
some low ievel, and these vibrations are close to
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Velocity amplitude in cm/s
\

their natural frequencies since the influence of
other modes is initially small. One of the modes
generally grows more rapidly than the others and
begins to influence their frequencies until the
whole oscillation settles down into one of the
possible steady state regimes discussed above.
The initial transient typically takes about 20
cycles of the fundamental frequency, though this
depends upon the nature of the nonlinearity.
Depending upon the form of the transient in the
force supplied by the player, the dominant steady-
state mode may differ from that which is dominant
during the early part of the transient. Some of
these effects are illustrated in Figure 2, which is
calculated for abrupt application of pressure to a
particular organ pipe (Fletcher, 1976). Similar
effects can ‘be observed and calculated for other
musical instruments.
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Figure 2: Calculated initial transient for a
flue organ pipe excited by abrupt application
of pressure with a slight overshoot. Note the
initial dominance of the second partial mode
II, and the final harmonic mode-locked

- regime.



It is of particular interest to examine the initial
transient in lip-driven brass instruments, for this
differs considerably from other cases. Such
instruments are often played using hom modes as
high as the sixteenth. This means that as many as
sixteen cycles of the note being played elapse
between its initiation and the time that the first
reinforcing reflection is received from - the
instrument bell. Analyms of - the autonomous
vibration of valves shows that the lip valve, which
in the simplest model is blown open by mouth
pressure and closed by pressure in the instrument
mouthpiece, can oscillate close to its resonance
frequency with the aid only of the capacitive
impedance of -the player's mouth (Fletcher,
1993a). The lips can ‘therefore launch a tone
burst at the frequency of the desired note.
Analysis is simple in the time domain, and the
importance of a cleanly defined reflection is clear,
but it is instructive to see the analogous treaunem
in the frequency domain.

The tone burst generated by the lips has a
spread of frequencies centred on its tone
frequency and excites a collection of horn modes
also centred on that frequency. For a long hom,
the separation of mode frequencies is small, and
quite a number of modes are excited. These
oscillate at their natural frequencies and retum to
their original phase relations after a time equal to
the reciprocal of their frequency separation. This
is just the reciprocal of the fundamental frequency
of the hom, as in the time-domain treatment. In
fact, an. analysis of the hom vibrations at an
intermediate time will show a tone burst
propagating down the hom, though possibly
smeared out by dispersion effects. There is an
additional fact that is clear from the frequency-
domain analysxs, however, and this is that the
cleanness of the reflected pulse is determined by
the degree of harmonicity of the group of modes
centred around the playing frequency that are
excited by the tone burst. It is possible to have
good mode alignment around one playing
frequency but not around another at some distance
from it, leading to good notes and bad notes on the
instrument.

Impulsively excited instruments

There is not space here to discuss the role of
nonlinearity in 1mpu1s1vely-ex01ted instruments in
any detail. Instruments such as the guitar and the
harpsichord are very nearly linear in behaviour,
and in the piano the nonlinearity is in the hammer

blow ' rather than in the instrument itself.
Similarly bells, which derive their elastic stiffness
from thick metal walls with  considerable
curvature, are substantially linear. As the walls
become thinner and the curvature less, however, a
bell transforms into a gong or a cymbal, and the
characteristic sounds of these instruments owe a
great deal to nonlinearity. -

If the nonlinearity is small, as in some Chinese
gongs, the most noticeable effect is a glide of
mode frequencies—either upwards or downwards
according to the geometry of the gong—with
changing amplitude (Fletcher, 1985). In gongs
with greater nonlinearity, such as the large
tamtam, we find a cascade of energy from the
low-frequency modes, excited by the initial strike
with ‘a soft beater, into high-frequency modes,
giving a most effective shimmering sound. Even
the common cymbal, which shows simple mode
behaviour at very small ‘excitation amplitudes,
behaves with great complexity -at higher
amplitudes and shows subharmonic generation of
many orders followed by a transition to chaotic
oscillation (Legge & Fletcher, 1989, Fletcher
1993b). Some of these effects are best studied in
the time domain and some in the frequency
domain, but understanding comes more easily
when both approaches are used.
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