Hyperhelices: A classical analog for strings and hidden dimensions
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A hyperhelix is a structure consisting of a rod coiled into a helix, coiled into a helix,..., through a
finite or even infinite number of orders. An examination of the transverse vibrations of such a
structure shows that the macroscopic behavior is accounted for by waves on the rod that are
confined to an extremely small range of wave numbers centered about a value equal to the reciprocal
of the smallest helical radius involved. All other dynamical aspects of the behavior and their
associated physical dimensions are completely hidden at the level of the final helix. It is suggested
that the study of the dynamics of such a structure might provide a fruitful analogy for understanding
the string theory. ©2004 American Association of Physics Teachers.
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[. INTRODUCTION of wave propagation on a simple helix, because of its prac-
tical importance in engineering. A helpful survey has been
As is well known to those working on the string theory of given by Wittrick?
elementary particles or cosmic structures, many of the pos- There are several forms of elastic waves that can propa-
sible physical dimensions of the string are hidden becausgate on a straight rod. The simplest are longitudinal waves,
they are coiled up into some sort of small structure concealetbrsional waves, and flexural or bending waves for which
within the string. In this paper, we examine the classicalthere are two orthogonal polarizations. Each of these waves
behavior of string-like structures with many hidden classicalhas a characteristic speed, with the speed of the flexural
dimensions to provide an analog of quantum string theory. waves being much smaller than the speed of the other wave
Classical structures do not have hidden dimensions, but alypes.
instructive analog can be found in the behavior of conceptual If w is taken to be the angular frequency anid the phase
structures called “hyperhelices”. A hyperhelix is a helical velocity of a wave of the type considered along the elemen-
structure where the coils of the helix are found to also consistary rod from which the helix is formed, thek=w/c
of a helix with a much smaller helical diameter though a=27/\, where\ is the wavelength measured along the rod.
similar helical pitch anglésee Fig. 1 In turn, the coils of  consider the propagation of bending waves when the rod is
this smaller helix consist of an even smaller helix, and s0 ONpant into a helix of radiuR. If k<R~ ! so that the wave-
In the discussion to follow, we proceed in the opposite direCignqi is much longer than the helical radius, there are two
tion where we take a rod, _<:0|I it into a helix, _(:0|I this helix t5rms of propagating waves, corresponding to the two polar-
into & very much larger helix, etc. For convenience, we shall; a46ns of the wave displacement relative to the helical axis.
refer to a simple helix as a hyperhelix of order 1, a simplegeterring to Fig. 1, if the displacement is perpendicular to
helix coiled into a larger helix as a hyperhelix of order 2, andy, o pejica| axis as represented By, then the result is a
T e o = e & el of oy et WS varicose” wave, which e defne 55 type A fo cone.
indpefinitely then the resulting object is fractal, but it is alsoenee, wh|c_h th_e radius Of- the helix expands and con-
' ! tracts. This motion is necessarily closely coupled to a longi-

possible for the structuring to end after a finite number ofy \ina motion of much larger displacement amplitude on the
generations, as is the case with the hidden dimensions (#

<tring theorv. and the resulting obiect miaht be termed uas‘I_elical rod when it is viewed with respect to the helical co-
fractgl Y, g obj 9 uaslyrdinate system, but the propagation velocity is essentially

The vibrational behavior of hyperhelices has been investithat of the bending wave. In the second type of wave, defined

gated by the author and colleagdeand the purpose of this as type B, the displacement is parallel to the helical axis, as

note is to discuss the way in which the hidden dimensionss.hOWn byTo, and the helical loops do not expand. The elas-

influence the behavior of the object as a whole. The hope i%qc strain in the elementary rod is then actually torsional,

that the hyperhelix mlght be a fruitful analogy by which t Ough this is not |mm8d|at8|y obvious. The Complicated

hysicists can convey to non-experts a picture of part of th&0UPlings between transverse, longitudinal, and torsional
2a¥ure of string theor))l/. P P P modes have been examined by several authdfsind are

clearly important in the engineering dynamics of helical
springs.

An interesting aspect of the behavior of type A and B
waves emerges when these waves are regarded on the scale
II. WAVE PROPAGATION ON A HELIX of the helix, considered as a straight tube-like element with

its helical structure ignored. Type A waves are then seen to

Wave propagation on a simple straight elastic rod is &€ Simple torsional waves on this super-structure, while type
classical problem in mechanics to which approximate soluB waves are longitudinal. No transverse waves of types
tions have been known for a long time. There are manyand T; on the helix as a whole appear to emerge, and this
treatments in literature of the much more complex problemappears to represent a problem since a helical spring can
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Fig. 1. (@ A simple helix, or hyperhelix of order 1. The torsionak,,,
longitudinal, Ly, and transverseT, and Ty, motions at the level of the
elementary curved rod are identified, as are their descriptions as torsional
¥, longitudinal,L,, and transversel,; andT;, modes of the first-order 0
helix. (b) A hyperhelix of order 2. There is a similar group of macroscopic

modes¥s, Ly, T, andT; on this structure, as well as hidden microscopic Fig. 2. (a) Dispersion curve for transverse wave propagation on a simple
modes of orders 1 and 0 on the elementary helix and elementarfrom 9- 2 p . . propag P
Ref. 1). helix. The frequency is plotted as a function of the wave number on the

elementary rod from which the helix is madé) The related curve for a

hyperhelix of order 2, showing the splitting nee=R; *, again plotted in

terms of the wave number on the elementary KoglA similar curve show-
clearly be displaced sideways and can support macroscopiay further splitting for a hyperhelix of order 3. In each case, the arrows

transverse waves. The origin of these macroscopic di5p|acghow the minima that are coupled to produce simple transverse waves on the
ments must be sought in a more careful examination of thg]acrosco_pic hyperhel_ix, and bullets show the wave numbers for which vari-
elementary waves. cose(torsmna} behavior ocgursfflrgm Ref. 1. In (b) and (c) the spread
For k< R_l, the propagation of type A and B waves along along thek axis near the poinR; ~ is greatly exaggerated.
the helix is nearly non-dispersiVeDispersion sets in at
larger wave numbers, and the phase velociyw/k falls to
zero whenk=R ™1, as shown in Fig. @), which gives dis-
persion curves plotted in the style of phonon dispersion
curves in crystals, though with a normal rather than a re- T
duced wave number. The surprising occurrence of frequency ‘
o

zeros in these curves, confirmed by a study of the progres-
sive bending of a rod has a simple macroscopic interpreta-
tion when the helix is viewed as a simple thick tube or rod
and its internal helical structure is ignored. WHers equal

to R™1, type A waves, in which there is a displacement nor-
mal to the helical axis, have a wavelength equal to the cir-
cumference of a single helical turn. This means that opposite
halves of the turn are displaced in opposite directions relative
to the helical axis, as shown in Fig. 3. This displacement is
coupled, in the helical coordinate system, to a longitudinal
displacement of the same wavelength which differs in phase
by 7/2 along the turn, so that there is no major elastic strain.
The result is that the whole turn is simply displaced side-
ways. Because all turns of the helix are displaced in exactly
the same way, the whole helix simply moves sideways.
There is no elastic strain and the propagation velocity on the
elementary rod is zero.

.When k'is not exaCtIy equal .t(R l’ the direction Qf the Fig. 3. Asingle helical turn, showing the displacements due to type A waves
displacement precesses \_Nlth _d|Stance alon_g the _he“X’ S0 th@ en the wavelength is exactly equal to the circumference of the turn (
the resultant macroscopic displacement is helical. In this-2;/R where R is the radius of the tupn Solid arrows show the
case, there is some elastic strain and the propagation velogansverse-wave displacements, and dotted arrows show the closely
ity, although small, is no longer zero. The angular sense ofoupled longitudinal-wave displacements, which are equal in amplitude
the helical wave depends on the sign k)f_Rfl; if k but displaced in pha_lse b7y/_2. (Black dots show the zeros of the respective
waves) The result is a simple transvergapward displacement of the

_1 . .
>R"7, then the helical turns are all slightly expanded by theWhole turn with no elastic strain being involved. All other turns behave in

o 1 )
wave, Whlle ifk<R they are all slightly ComprGSSEd- the same manner, and there is no elastic strain in the whole wave, which
Consider now the simultaneous propagation of two Suchherefore has zero frequency.
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waves on a helix with helical pitch angte When a helical hyperhelix of ordem, the macroscopic wave behavior can
type A wave of wave numbek=R ™1+ § is associated with be shown to be confined to the wave number range

a wave of the same amplitude with wave numkerR ! N N—1
-5, the_ resultant wave is a macroscopic plane transverse RIlt 2 RElH . (1)
wave with wave numbe#ia on the helix as a whole. Once n=2 m=1

more, there are two polarizations of this wave, depending o
the signs with which the component helical waves ar

ioFlgelled. :crhhetr?h 1S, however,_ ah S]maln compllr::atlon. af dimensions are so large that the macroscopic wave numbers
< . .
SO that theé macroscopic helical waves have a Wavey e confined to a very small region néare=0.

length extending over many helical turns, the propagation For the simple case in which the pitch anatesand size
speeds of the two helical components of a planar transverse . P P g .
wave of low frequencys will be very nearly, but not exactly, ratiosR, /R, ,, are taken to be constant and the sequence is

equal. This means that the polarization plane of the transgontinued so thall—occ, the Hausdorffor capacity dimen-
verse waves on the helix will gradually precess as theyion of the resulting fractal structure®is
propagate. The distance over which this precession becomes log(@R, /R4 1)
appreciable is, however, very large for a finely coiled helix, ~ oo R IR - 2
and so can generally be ignored. 0g(Rn/Rn+1)

The important conclusion from this discussion is that it isBecause geometrical considerations require BjatmR, . |
possible to disregard the internal structure of the helix and tac o< 1, the dimensio lies in the range ¥D<2.
regard it as a macroscopic straight rod with appropriately Thjs discussion has modeled the hyperhelix as being suc-
low density and elastic modulus. All of the normal macro-cessively coiled into larger and larger helical structures, so
scopic transverse wave distortions on this helical rod are theghat one has to take a successively more “global” view of its
represented by waves of wave number very closRt on  pehavior. This is the reason that the wave number range on
the invisible elementary rod that makes up the helix. All ofthe elementary rod that describes this behavior is progres-
the geometrical dimensions that refer to this elementary rodjvely more and more limited. It would, of course, be pos-
have been hidden, and remain hidden until the frequency dfible to proceed in the opposite direction: To regard the final
the waves on the macroscopic helix is increased to the exteRfyperhelix of ordeN as an ordinary macroscopic object and
that the slow precession of the polarization plane of transthen to take a progressively more highly magnified view of
verse waves as they propagate becomes detectable. A Simpig structure. If this were done, then the macroscopic waves
physical example is the behavior of the helical cord oftenyf \yave numbek, would be seen to be made up from waves

used to connect the handset of a telephone to its base. TI}% the underlying hyperhelix of ord&f— 1 and having wave
cord behaves in almost all ways like a simple rope or a ro . . i
with minimal stiffness, and its helical sub-structure can benumberskN_l lying very close to Ry/Ry-1)ky. This pro

ignored provided waves excited on it have a WavelengtI'PreSSion would then continue as further underlying hyperhe-
much greater than the spacing between the helical turns. ical orders were examined. Although this interpretation is,

perhaps, the more logical way in which to approach hidden

dimensions, it has not been adopted here because of the

lll. WAVE PROPAGATION ON A HYPERHELIX greater difficulty in describing the p?ogression of wave types.
If a straight rod is regarded as a hyperhelix of order zerorhe dispersion curves would still have the form shown in

and a simple helix as a hyperhelix of order 1, then a hyperFig. 2 except that the scale would change immensely in go-

helix of order 2 can be formed by coiling an ordinary helix ing from Figs. 2a) to 2(b) to 2(c).

of radiusR; into a much larger helix of radiuR,. Because,

as noted, the ordinary helix actually behaves like a simplgy. CONCLUSIONS

rod carrying waves with wave numbdni:k—Rl’1 for k

~R1’1, the hyperhelix will behave like an ordinary rod when

Bn the elementary rod, where the subscripts refer to the hy-
eperhelical orders. On the hyperhelix of order the physical

Although the relevance to string theory is not readily ap-

. — . arent, quasi-fractal hyperhelices clearly have the essential
Ky is close toR, " BecauseR,>Ry, the macroscopic be- pbility toqhide dimensio);ps and mode det;/ils within an appar-
havior of the second-order hyperhelix is the_riafore_(l:ontame@nﬂy simple structure. Perhaps the richness of these possi-
within the two coupled regions very close® “+R, ~ and  pjjities may provide some analogies from which string
Rl‘l—Rz‘l, respectively, as shown in Fig(l8. Within these  theory, or other areas of theoretical physics, might benefit.
two neighborhoods, all of the complexities of the wave mo-
tions on hyperhelices of orders 0 and 1 are hidden. Electronic mail: neville fletcher@anu.edu.au
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