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A hyperhelix is a structure consisting of a rod coiled into a helix, coiled into a helix,..., through a
finite or even infinite number of orders. An examination of the transverse vibrations of such a
structure shows that the macroscopic behavior is accounted for by waves on the rod that are
confined to an extremely small range of wave numbers centered about a value equal to the reciprocal
of the smallest helical radius involved. All other dynamical aspects of the behavior and their
associated physical dimensions are completely hidden at the level of the final helix. It is suggested
that the study of the dynamics of such a structure might provide a fruitful analogy for understanding
the string theory. ©2004 American Association of Physics Teachers.
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I. INTRODUCTION

As is well known to those working on the string theory
elementary particles or cosmic structures, many of the p
sible physical dimensions of the string are hidden beca
they are coiled up into some sort of small structure concea
within the string. In this paper, we examine the classi
behavior of string-like structures with many hidden classi
dimensions to provide an analog of quantum string theor

Classical structures do not have hidden dimensions, bu
instructive analog can be found in the behavior of concep
structures called ‘‘hyperhelices’’. A hyperhelix is a helic
structure where the coils of the helix are found to also con
of a helix with a much smaller helical diameter though
similar helical pitch angle~see Fig. 1!. In turn, the coils of
this smaller helix consist of an even smaller helix, and so
In the discussion to follow, we proceed in the opposite dir
tion where we take a rod, coil it into a helix, coil this hel
into a very much larger helix, etc. For convenience, we sh
refer to a simple helix as a hyperhelix of order 1, a sim
helix coiled into a larger helix as a hyperhelix of order 2, a
so on. A simple rod is then a hyperhelix of order zero. If th
super-structuring~or sub-structuring! is allowed to continue
indefinitely, then the resulting object is fractal, but it is al
possible for the structuring to end after a finite number
generations, as is the case with the hidden dimension
string theory, and the resulting object might be termed qu
fractal.

The vibrational behavior of hyperhelices has been inve
gated by the author and colleagues,1 and the purpose of this
note is to discuss the way in which the hidden dimensi
influence the behavior of the object as a whole. The hop
that the hyperhelix might be a fruitful analogy by whic
physicists can convey to non-experts a picture of part of
nature of string theory.

II. WAVE PROPAGATION ON A HELIX

Wave propagation on a simple straight elastic rod is
classical problem in mechanics to which approximate so
tions have been known for a long time. There are ma
treatments in literature of the much more complex probl
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of wave propagation on a simple helix, because of its pr
tical importance in engineering. A helpful survey has be
given by Wittrick.2

There are several forms of elastic waves that can pro
gate on a straight rod. The simplest are longitudinal wav
torsional waves, and flexural or bending waves for wh
there are two orthogonal polarizations. Each of these wa
has a characteristic speed, with the speed of the flex
waves being much smaller than the speed of the other w
types.

If v is taken to be the angular frequency andc is the phase
velocity of a wave of the type considered along the elem
tary rod from which the helix is formed, thenk5v/c
52p/l, wherel is the wavelength measured along the ro
Consider the propagation of bending waves when the ro
bent into a helix of radiusR. If k!R21 so that the wave-
length is much longer than the helical radius, there are
forms of propagating waves, corresponding to the two po
izations of the wave displacement relative to the helical a
Referring to Fig. 1, if the displacement is perpendicular
the helical axis as represented byT0 , then the result is a
‘‘varicose’’ wave, which we define as type A for conve
nience, in which the radius of the helix expands and c
tracts. This motion is necessarily closely coupled to a lon
tudinal motion of much larger displacement amplitude on
helical rod when it is viewed with respect to the helical c
ordinate system, but the propagation velocity is essenti
that of the bending wave. In the second type of wave, defi
as type B, the displacement is parallel to the helical axis
shown byT08 , and the helical loops do not expand. The ela
tic strain in the elementary rod is then actually torsion
though this is not immediately obvious. The complicat
couplings between transverse, longitudinal, and torsio
modes have been examined by several authors,1,3,4 and are
clearly important in the engineering dynamics of helic
springs.

An interesting aspect of the behavior of type A and
waves emerges when these waves are regarded on the
of the helix, considered as a straight tube-like element w
its helical structure ignored. Type A waves are then seen
be simple torsional waves on this super-structure, while t
B waves are longitudinal. No transverse waves of typesT1

and T18 on the helix as a whole appear to emerge, and
appears to represent a problem since a helical spring
701© 2004 American Association of Physics Teachers
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clearly be displaced sideways and can support macrosc
transverse waves. The origin of these macroscopic displ
ments must be sought in a more careful examination of
elementary waves.

For k!R21, the propagation of type A and B waves alon
the helix is nearly non-dispersive.2 Dispersion sets in a
larger wave numbers, and the phase velocityc5v/k falls to
zero whenk5R21, as shown in Fig. 2~a!, which gives dis-
persion curves plotted in the style of phonon dispers
curves in crystals, though with a normal rather than a
duced wave number. The surprising occurrence of freque
zeros in these curves, confirmed by a study of the prog
sive bending of a rod,5 has a simple macroscopic interpret
tion when the helix is viewed as a simple thick tube or r
and its internal helical structure is ignored. Whenk is equal
to R21, type A waves, in which there is a displacement n
mal to the helical axis, have a wavelength equal to the
cumference of a single helical turn. This means that oppo
halves of the turn are displaced in opposite directions rela
to the helical axis, as shown in Fig. 3. This displacemen
coupled, in the helical coordinate system, to a longitudi
displacement of the same wavelength which differs in ph
by p/2 along the turn, so that there is no major elastic stra
The result is that the whole turn is simply displaced sid
ways. Because all turns of the helix are displaced in exa
the same way, the whole helix simply moves sidewa
There is no elastic strain and the propagation velocity on
elementary rod is zero.

When k is not exactly equal toR21, the direction of the
displacement precesses with distance along the helix, so
the resultant macroscopic displacement is helical. In
case, there is some elastic strain and the propagation ve
ity, although small, is no longer zero. The angular sense
the helical wave depends on the sign ofk2R21; if k
.R21, then the helical turns are all slightly expanded by t
wave, while ifk,R21 they are all slightly compressed.

Consider now the simultaneous propagation of two s

Fig. 1. ~a! A simple helix, or hyperhelix of order 1. The torsional,C0 ,
longitudinal, L0 , and transverse,T0 and T08 , motions at the level of the
elementary curved rod are identified, as are their descriptions as torsi
C1 , longitudinal,L1 , and transverse,T1 andT18 , modes of the first-order
helix. ~b! A hyperhelix of order 2. There is a similar group of macroscop
modesC2 , L2 , T2 , andT28 on this structure, as well as hidden microscop
modes of orders 1 and 0 on the elementary helix and elementary rod~from
Ref. 1!.
702 Am. J. Phys., Vol. 72, No. 5, May 2004
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Fig. 2. ~a! Dispersion curve for transverse wave propagation on a sim
helix. The frequency is plotted as a function of the wave number on
elementary rod from which the helix is made.~b! The related curve for a
hyperhelix of order 2, showing the splitting neark5R1

21, again plotted in
terms of the wave number on the elementary rod.~c! A similar curve show-
ing further splitting for a hyperhelix of order 3. In each case, the arro
show the minima that are coupled to produce simple transverse waves o
macroscopic hyperhelix, and bullets show the wave numbers for which v
cose ~torsional! behavior occurs~from Ref. 1!. In ~b! and ~c! the spread
along thek axis near the pointR1

21 is greatly exaggerated.

Fig. 3. A single helical turn, showing the displacements due to type A wa
when the wavelength is exactly equal to the circumference of the turnk
52p/R where R is the radius of the turn!. Solid arrows show the
transverse-wave displacements,T, and dotted arrows show the close
coupled longitudinal-wave displacements,L, which are equal in amplitude
but displaced in phase byp/2. ~Black dots show the zeros of the respectiv
waves.! The result is a simple transverse~upward! displacement of the
whole turn with no elastic strain being involved. All other turns behave
the same manner, and there is no elastic strain in the whole wave, w
therefore has zero frequency.
702N. H. Fletcher
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waves on a helix with helical pitch anglea. When a helical
type A wave of wave numberk5R211d is associated with
a wave of the same amplitude with wave numberk5R21

2d, the resultant wave is a macroscopic plane transve
wave with wave numberd/a on the helix as a whole. Onc
more, there are two polarizations of this wave, depending
the signs with which the component helical waves
coupled. There is, however, a small complication. Ifd
!R21 so that the macroscopic helical waves have a wa
length extending over many helical turns, the propagat
speeds of the two helical components of a planar transv
wave of low frequencyv will be very nearly, but not exactly
equal. This means that the polarization plane of the tra
verse waves on the helix will gradually precess as th
propagate. The distance over which this precession beco
appreciable is, however, very large for a finely coiled he
and so can generally be ignored.

The important conclusion from this discussion is that it
possible to disregard the internal structure of the helix an
regard it as a macroscopic straight rod with appropriat
low density and elastic modulus. All of the normal macr
scopic transverse wave distortions on this helical rod are t
represented by waves of wave number very close toR21 on
the invisible elementary rod that makes up the helix. All
the geometrical dimensions that refer to this elementary
have been hidden, and remain hidden until the frequenc
the waves on the macroscopic helix is increased to the ex
that the slow precession of the polarization plane of tra
verse waves as they propagate becomes detectable. A s
physical example is the behavior of the helical cord of
used to connect the handset of a telephone to its base.
cord behaves in almost all ways like a simple rope or a
with minimal stiffness, and its helical sub-structure can
ignored provided waves excited on it have a wavelen
much greater than the spacing between the helical turns

III. WAVE PROPAGATION ON A HYPERHELIX

If a straight rod is regarded as a hyperhelix of order z
and a simple helix as a hyperhelix of order 1, then a hyp
helix of order 2 can be formed by coiling an ordinary he
of radiusR1 into a much larger helix of radiusR2 . Because,
as noted, the ordinary helix actually behaves like a sim
rod carrying waves with wave numberk15k2R1

21 for k
'R1

21, the hyperhelix will behave like an ordinary rod whe
k1 is close toR2

21. BecauseR2@R1 , the macroscopic be
havior of the second-order hyperhelix is therefore contai
within the two coupled regions very close toR1

211R2
21 and

R1
212R2

21, respectively, as shown in Fig. 2~b!. Within these
two neighborhoods, all of the complexities of the wave m
tions on hyperhelices of orders 0 and 1 are hidden.

This progression, with the size of the helix increasing
several orders of magnitude at each order, can be ca
through an arbitrary number of orders, each order effectiv
hiding one dimension of the behavior and reducing furt
the region of elementary wave number space involved on
initial rod. The situation is, however, more complex than
initially appears, because the relevant region of wave num
space splits into two at each hyperhelix stage, so that
final dispersion curve is a quasi-fractal object, terminat
after a finite number of stages if the order of the final hyp
helix is also finite. This is illustrated in the dispersion curv
for hyperhelices of order 1, 2, and 3 shown in Fig. 2. Fo
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hyperhelix of orderN, the macroscopic wave behavior ca
be shown1 to be confined to the wave number range

R1
216 (

n52

N

Rn
21 )

m51

N21

am , ~1!

on the elementary rod, where the subscripts refer to the
perhelical orders. On the hyperhelix of orderN, the physical
dimensions are so large that the macroscopic wave num
kN are confined to a very small region nearkn50.

For the simple case in which the pitch anglesan and size
ratiosRn /Rn11 are taken to be constant and the sequenc
continued so thatN→`, the Hausdorff~or capacity! dimen-
sion of the resulting fractal structure is6

D5
log~aRn /Rn11!

log~Rn /Rn11!
. ~2!

Because geometrical considerations require thatRn /pRn11

,a,1, the dimensionD lies in the range 1,D,2.
This discussion has modeled the hyperhelix as being s

cessively coiled into larger and larger helical structures,
that one has to take a successively more ‘‘global’’ view of
behavior. This is the reason that the wave number range
the elementary rod that describes this behavior is prog
sively more and more limited. It would, of course, be po
sible to proceed in the opposite direction: To regard the fi
hyperhelix of orderN as an ordinary macroscopic object an
then to take a progressively more highly magnified view
its structure. If this were done, then the macroscopic wa
of wave numberkN would be seen to be made up from wav
on the underlying hyperhelix of orderN21 and having wave
numberskN21 lying very close to (RN /RN21)kN . This pro-
gression would then continue as further underlying hyper
lical orders were examined. Although this interpretation
perhaps, the more logical way in which to approach hidd
dimensions, it has not been adopted here because of
greater difficulty in describing the progression of wave typ
The dispersion curves would still have the form shown
Fig. 2 except that the scale would change immensely in
ing from Figs. 2~a! to 2~b! to 2~c!.

IV. CONCLUSIONS

Although the relevance to string theory is not readily a
parent, quasi-fractal hyperhelices clearly have the esse
ability to hide dimensions and mode details within an app
ently simple structure. Perhaps the richness of these po
bilities may provide some analogies from which strin
theory, or other areas of theoretical physics, might benefi
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