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ABSTRACT

A variational method is developed for calculating the energy of an interface
between two crystals of arbitrary structures and relative orientations. The
method takes account of details of the interaction potential between atoms
and allows for all possible displacements of ators near the interface but, by
considering the Fourier transforms of all the quantities involved, the number
of significant variational parameters is kept small.  The form of the varia-
tional function is such that deductions can be made about the existence of
cusped energy minima for certain simple matchings between the two crystal
lattices. The formalism contains the dislocation model of a crystal boundary
as a limiting case but also allows for calculations in more general situations.

§ 1. INTRODUCTION

A knowledge of the energy and structure of an interface between two
crystalline solids is of importance in many branches of crystal physics
and much experimental and theoretical work has been directed towards
increasing our understanding of the subject (for reviews, see Brooks 1952,
Read 1953, Amelinckx and Dekeyser 1959). Theoretical studies have
generally been based upon some sort of dislocation model for the interface. °
(Frank and van der Merwe 1949, van der Merwe 1950, 1963), though
it has recently become marginally feasible, with modern computers, to
consider the displacements of individual atoms near boundaries or other
imperfections of simple form.

In an earlier paper (Fletcher 1964), one of the present authors proposed
a simple variational technique for calculating the energy of an interface
between two crystals of different structure and arbitrary orientation,
the approximation of the method being intermediate between that of a
dislocation treatment and a rigorous atom-by-atom calculation. By
applying this method to a one-dimensional interface it was demonstrated
that, whilst the treatment could be reduced to a dislocation model for
small misfits between the two lattices, it was much better adapted than
was the dislocation model to dealing with large misfits and showed up the
existence of cusped energy minima for misfit ratioslike 2:1 or 3:2. These
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cusped minima had previously been discussed, for the case of a simple
tilt boundary, by Read and Shockley (1950) and their existence has since
also been demonstrated, using a .generalized hierarchical dislocation
model, by du Plessis and van der Merwe (1965).

The variational method previously used, however, suffers from anumber
of approximations and inconsistencies which stem from the procedure
of treating the two crystals separately and then superposing the results.
It also neglects displacements normal to the interface which, in any real
crystal, are likely to play a considerable part in determining the interface
structure and energy. The purpose of the present paper is to present the
formal theory of the variational method in a generalized form which removes
these inconsistencies and approximations but which is still realistic from
the point of view of actual numerical calculation. In a subsequent
publication we shall present the results of such an explicit calculation for
2 real two-dimensional interface and discuss how the conclusions can be
of assistance in understanding certain phenomena connected with crystal
nucleation and epitaxial growth.

§ 2. TrE VARIATIONAL METHOD

The quantity which we wish to evaluate is the energy of the interface
between two low-index faces of different crystals placed in intimate
contact, with arbitrary relative orientation. For convenience we take
the sum of the surface energies of the two separated crystals as a zero.

Tt is clear that the atoms near the interface will be displaced elastically
away from their normal positions in the lattice so that there will be a
considerable positive contribution from elastic strain energy in the body
of each crystal in addition to the negative contribution made by the pair-
by-pair atomic interactions across the interface. We shall restrict our
attention in what follows to cases where the adhesive energy can be
considered as made up of such short-range pair-wise interactions, so that
the discussion may not be directly applicable to metallic interfaces where
Gonduction electrons play a large part in the binding energy.

In a detailed ¢ brute-force’ computer solution one could vary the positions -
of each atom in the bi-erystal until the energy had been minimized but,
even in simple situations, the number of variational parameters required
is of the order of 104 so that a great deal of computer time is required and
no general pattern emerges until a great number of specific cases have been
studied.

The basis of the present method is to observe that, if the displacements
of atoms immediately adjacent to the interface are analysed in a Fourier
series, certain resonance terms in this series are then of preponderant
importance. The amplitudes and polarizations of these Fourier components
then provide a small set of variational parameters with respect to which
the energy may be minimized. As for the-energy component due to
elastic strain, the crystals may validly be approximated by semi-infinite
elastic continua and the elastic problem is then one which has been studied
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in detail elsewhere. The total number of variational parameters requiréd
to treat a general interface is typically less than 100 and, because the
variational expression has a transparent analytical form, the most significant
Pparameters may easily be selected to reduce the effective member still
further. Again, because of the: form of the variational expression, -the
minimization programme can be written in a form which will converge
quickly and, however many parameters are arbitrarily set equal to
zero, the method will always yield a valid upper bound to the energy.

In the discussion to follow we will calculate first the pair-wise interaction
energy across the boundary and then the elastic strain energy. Finally
we combine these two components and discuss the form of the variational
expression for the total energy.

§ 3. INTERACTION ENERGY

Suppose that one semi-infinite crystal, which we shall call the substrate,
consists of atoms of type A and that the other crystal, the overgrowth, is
of atoms of type B. Then the whole of the interaction energy must be
expressible in terms of the interaction potential v, 5(r) between an A and
a B atom separated by a distance r. We shall consider only this simplest
case in which each crystal is monatomic but the argument can easily be
extended to more general cases. We shall also assume the range of v, ;(r)
to be so short that only nearest neighbours (or at most next-nearest
neighbours) need to be considered in any interaction.

Our first task is to calculate the potential felt by a B atom neaf the
complete A substrate when it is subject to a set of arbitrary distortions.
We can then sum over the atoms of a whole arbitrarily distorted B erystal
to find the interaction energy in this general state.

3.1. Substrate Potential

Consider first the potential V,, experienced by a B atom just outside
a low-index surface of a perfect, undistorted substrate of A atoms whose
positions are given by the vectors R. If the B atom is at the point r then

Vo(")=ZR:UAB(I"—RDEER”("“R% e oo (D)

where the second form of writing shows the simplified notation we shalt
use henceforth. Because of the assumed short range of »(r), the only
effective terms in the R summation are those applying to atoms in the
surface layer (nearest neighbours) or the layer immediately below this.
This potential can be resolved into Fourier components V(k), given by :

Volk)= Q—lf exp (—ik. r)Ev(r—R) dr
~ S exp(—ik. R)Q“lfexp[—-@k (r—R)Jp(r— R)d(r—R)
—Eexp(—zk R)v(k), N )
R

where v(k) is the Fourier transform of the atomic interaction potential
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2(r) and Q is the volume over which the integration is performed. Since
v(r) is real, we have:
v(=k)=o()*. . . ... (3)

We now note that, because the sum over R in (2) is only a half-space,
we cannot immediately write it as §, @, where & are the reciprocal lattice
" vectors of the substrate. However, if k; is the component of k parallel to
the interface and g are the components of & in this same plane, we can write:

;imzexp(—ikl.R)zNkag, B )}
> R
where N is the number of lattice points R in the summation.

Strictly speaking we now require a continuous range of components of k
normal to the interface but, because the interatomic potentials are of
short range, we can confine our attention to a region of thickness  adjacent
to the surface and imagine the potential distribution in a symmetric slab
of thickness 2% to be repeated periodically outside our region of interest.
The total potential can then be described by giving Fourier components
at all points of a reciprocal lattice with vectors:

G=g+2mA2h; (n=0,+1,...), . . . . . (5)
where h is the unit vector normal to the surface. Equation (4) can then

be generalized to read:
lim Yexp(—tk.R)=N8, - - - . . . . (6)
N> R
G is not, of course, in general coincident with the ordinary reciprocal
lattice &, except in the plane n=0.

We now introduce distortions into the substrate. To make it easier
to count modes we first bring the complete B crystal up to the substrate
and note that by a pure displacement combined with an arbitrarily small
change in the lattice parameters of one of the crystals it will always be
possible to bring some three atoms of the B crystal into coincidence with
three atoms of the A crystal. The two vectors in the surface joining one
of these atoms to the other two then define a plane superlattice in which
the behaviour of any distortions must be periodic. The size of this super-
lattice will generally be very large and can be let tend to infinity so that
it places no physical restrictions on the problem. At the same time, by
reducing the number of distortion components to a denumerable infinity,
it effects a considerable algebraic simplification.

Because of the existence of this superlattice we can now decompose a
general distortion of the surface of the substrate in which the atom at
R moves to R+F(R) as:

F(R)= —Xexp (K. R)Fg, . . . . . . (7)

where K are vectors of the reciprocal lattice of the superlattice. These
vectors K are always parallel to the interface but the vector components
F(K) may have any orientation. Because only atoms in the surface of the
substrate effectively contribute to the potential, we may neglect the
(exponential) variation of F with depth below the surface.
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Since F(R) is real,

Fo=Fc* . . . . . . . . (8)
and we can write :
Fy=Cy—iD,, . . . . . . . )]
where
‘ Cx=Cx; D_y= ~De. . ... (10)
Equation (7) then becomes : '
F(R)=—2*2[Dysin (K. R)+Cy cos (K.R)]—C,, . . (11)

where the + on the summation indicates that 1t extends over only half of
K-space, and we have explicitly included the K =0 term, representing a
shift in origin.

Substitution of R—R+F(R) into (2) then gives general potential
eomponents for the distorted substrate :

V (k)=v(k)> exp[—ik.(R— Coll TH{exp [2ik . D, sin (K. R)]
R K
xexp [2tk.Cycos (K.R)J}.  (12)
Toreduce this we make use of the Bessel function expansion (Watson 1944) :

exp{g<t—;>}= S Lewe . (13)

with {=exp (K.R), z=2k. Dy and {=exp[iK.R+i(7/2)], z=2k. Cy
respectively, giving :
' V(k)=v(k)§R:eXp[—ik. (R—Cy)]

<TI+| 3 r;mJn(zk.DK)Jm(zk.cK)exp[f;(ner)K.‘R]:l. (14)

K n, M= —
We can now use the relation (6) to pick out the allowed terms in this
expansion, giving:

(k) = No(k) exp (ik . Co{I T+ (2k . D)o (2k . Co}
i Jn(2k.Dy) . J,(2k.C,)
8 + n K o n K o

{ ket 22 Jo(2k.Dy) Jo(2k.Cy) |, <K G

n=1K
4§ 5 [Tl DQJn2k.Dy 7.0k DYT,ek. )
w1 L 7,@K D) 7,2k D) Jo2k.D,)7,2k.C,)
, Jn(2k.CK)Jm(2k.C,_):' }
4+ gntm —nK—m + ... 5 15
To@, C )T, Bk C,) |, K-nk-mi.c (1)

where we have used the freedom of sign of the order of the Bessel functions
to extend the K, L...summations to the whole space. The truncated
terms in (15) involve products of three or more Bessel functions of non-
zero order and are easily written down if required. The numbers on the
brackets will be used to refer to them later.

We note that the potential of the distorted lattice, as well as containing
the Fourier components of the undistorted potential with reduced strength,
now has satellite components around each of them, corresponding to wave-
number shifts produced by the distortions. The analysis is, in fact, a’
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generalized form of that which might be employed in discussing the
frequency "or phase modulation of a radio frequency carrier wave in
communication theory.
fe. .
3.2. Interaction Energy
" Now that-we have calculated the interaction potential within a region
of thickness % outside the substrate surface, it is a relatively simple matter,
using the same techniques, to add. up the contributions of all atomic
‘positions in.the overgrowth to obtain the interaction energy. Because
of the short range of v(r) this sum has its major contribution from the
surface layer of atoms in the overgrowth and, to simplify the algebra,:we
will omit any contribution from the next-nearest layer. ‘
If the atomic positions in the undistorted overgrowth are denoted by

R’ and the distortions by F'(R’) then these may, because of the existence of
the superlattice, be analysed in terms of Fourier components based upon
the same set.of vectors K as used for the substrate, to give:

F/(R))= 3+2[D sin (K. R) + C,’ cos (K. R)]+Cp. . . (16)
K -

The change in sign, as compared with (11), is for reasons of symmetry.
The total interaction energy can then be written:
B = - SSVkexplik. [R+FR)D, . . . (7)
N'A" %

where N is the number of atoms in the sum and 4" is the surface area per
atom.
" The- expanded form obtained by substituting (16) in (17) may be
evaluated using exactly the same procedures employed to reduce (12).
Tt is necessary in the course of the reduction to define an effective reciprocal
lattice G’ for the overgrowth and, since % is the potential overlap region
common to the two crystals, we find, in analogy with (5),

G'=g +2mh[2h; (n=0,+1,...).. . . . (18)

The final result for the interaction energy per unit area, &, is:

NN’ 1)2 i 1 .

B~ (G) Zrkesp(ik.B) {174k D2k}

A44') A K J

x {];[JrJo(zk D) (2K cK')} {3,@ Sscr

+ 3 5[ ] sermetie + 3 3 | termebos

n=1 K 1 n=1 K 1

© .
X Z z [ ] [:l 8G +nK-+n'K’, G’ 8k, G+nK
n,n'=1K, K 1 1

[ce]
+ Z 1 :I SG+nK+mL,G’3k,G’
, 2

+ 2 [] 86+'nK+mL,G’8k,G+“~}: N )
: 2 ‘
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where the brackets [}, and [], refer to the corresponding bracketed
expressions in (15) and the brackets [];, and [], are the same expressions
with Cy, Dy replaced by €', Dy'. The translations C, and C," have
been combined to a single vector B.

Two things can immediately be seen from the form of B;. Firstly, since,
in the sums over k and K, each term is accompanied by a term in —k and
—K, and since the coefficients obey (3) and (10), E; is a real quantity, as
it must be physically. Secondly, the expression is symmetric in form with
respect to contributions from overgrowth and substrate so that the same
- result would have been arrived at had we begun our calculation with
crystal B instead of crystal A. This again is physically necessary.

Though the expression (19) is complicated, the number of terms involved
is not actually large since the Kronecker deltas select just one term from
each summation. A further restriction on possible distortion terms is
imposed by the finite mesh size of each undistorted crystal lattice. The
distortions F(R) and F'(R’) are not really continuous functions but have
meaning only at the lattice points. Thus, just as in the theory of phonons
in crystals, of which these distortions are the static analogue, the ‘ wave
vectors’ K must lie within the first Brillouin zone of the crystal con-
cerned, these Brillouin zones being defined by the surface reciprocal
lattice vectors g and g’ respectively. We shall see in the next section how
these restrictions can be automatically included in the formalism.

We may also anticipate a result from the next section and remark that’
there are, in general, six equations relating to the twelve components of
the distortion vectors Cy, Dy, €', and D,/ associated with any distortion
K. This effectively reduces the number of independent distortions
(which will form our set of variational parameters) by a factor 2.

Finally we note that if one erystal has an n-fold axis of rotation symmetry
normal to the interface plane and the other an m-fold axis, then the number
of independent distortion components is further reduced by the highest
common factor of #» and m. These observations, combined with the fact
that a physically reasonable potential has only a finite, and not very large,
extension in k-space, mean that the number of independent variational
parameters in (19) is not unmanageably large. We shall see later that
they can also be easily placed in order of importance.

§ 4. Erastic Exgray

We now, come to calculate the elastic strain energy associated with the
distortion components F, and F,'. These distortions have a maximum
amplitude of about one interatomic spacing for modes of long wavelength
(small K) while the maximum amplitude for modes with K near the zone
boundary cannot exceed a few tenths of one interatomic spacing and,
except in the case of very soft crystals, will usually be much less than
this. Typical total strains probably therefore do not-exceed about 20%,
and are often much less than this, so that it is a reasonable approximation
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to calculate the strain energy on the assumption that each crystal behaves
as an elastic continuum.

Even the case of an elastic continuum subject to periodic displacements
at its free plane surface is a complicated problem, though its simpler
aspects are well documented (Sokolnikoff 1956, van der Merwe 1963).
Whilst there is only a moderate complication in treating crystals of finite
thickness (van der Merwe 1963), we shall content ourselves with a discussion
of the simpler problem posed by semi-infinite crystals and even here we shall
seelc the simplest approximation consistent with the needs of our problem.

We assume that each crystal can be treated as an isotropic elastic
continuum whose moduli are the same for all distortions with wave vector
K lying within its first Brillouin zone. Let us further suppose that we
can define and measure an elastic modulus for each of the three types of
distortion Fyq) (with F parallel to K), Fye) (with F perpendicular to K but
still lying in the interface) and Fyg) (with F normal to the interface);, and
denote them by 71, 1, and n; respectively. This can be done for both
substrate and overgrowth, giving in the latter case s e and ng'. We
shall also assume that the two crystals are of similar structure so that
n;/m; is independent of <.

Now, since all stresses must balance across the interface, this simplified
set of assumptions gives .
nFeo=1Fxo - - - - - - - - (20)
for all 4, provided K lies within the first Brillouin zone of each crystal.
To ensure that distortions corresponding to larger K values vanish, we
agsume that n;= co when K lies outside the first Brillouin zone of g, with
a similar requirement for »;". ‘

When superposition of different distortion components is considered
we see that, whilst distortions of different K are orthogonal and can be
freely superposed, cross-terms occur between the different Fy(; belonging to
the same value of K. For example Dy, which is parallel to K, gives rise
to periodic regions of compression and tension which, through an effective
‘surface Poisson’s ratio’, cause displacements normal to the interface
and so contribute to Cy. The effect is, however, not large and is com-
pensated to a large extent by 2 displacement of the overgrowth in the
same direction. The effect has been considered in greater detail by van
der Merwe (1962) who concluded that its influence on total energy was
small. In the interests of simplicity we shall therefore neglect such cross
terms in the discussion which follows.

The elastic strains fall off exponentially away from the interface in
each crystal and the elastic strain associated with a particular distortion
can be calculated by integrating the product §(stress) x (strain), throughout
the volume. More simply, however, since we have already defined
appropriate elastic moduli, we may integrate the same effective product
over the interface to give, for unit area:

E.= 22K+K O +Dya®) +7: (C'@®+ Dx'0®1 - - (21)




Structure and Energy of Crystal Interfaces 107

- where K, O and D, are the moduli of K, C; and D, respectively. This
equation, together with (20) and the condition that »; and », become
infinite outside their respective first Brillouin zone, sums up our treatment
of the elastic energy.

§ 5. Discussion

The energy of the interface in its state of arbitrary general strain, relative
to the sum of the surface energies of the two separated crystals as a zero,
is found by summing terms corresponding to the interaction energy across
the interface and the elastic strain energy in the two crystals:

E=Ei+Ee: . . . . . . . . (22)

where E;and £, aredefined by (19) and (21)respectively and the coefficients
involved are related by (20). The energy given by (22) contains a large
set of vectorial variational parameters Cy, Cy’, D, and D,/ representing
all possible relevant distortions of the interface, and the true value of E
is found by minimizing (22) with respect to these parameters. The whole
problem is now best treated numerically and indeed we shall discuss the
results of a typical éalculation in a subsequent paper. It is worth while,
however, to make a few observations on the general form of the expression
for E and on its relation to the dislocation model.

In the first place we note from (19) that minima occur in & for lattice
ratios and orientations for which §g ¢ =0, ,=1 and that the depth of a
minimum is proportional to the »(G)involved. This coincidence of reciprocal
lattice vectors between the surfaces of overgrowth and substrate implies
a corresponding coincidence between certain atomic positions in the
surfaces of the two crystals, the number of such atomic coincidences
being greatest for small values of g and g'. Generally the potential
components »(G) will also be largest. for small values of G so that we can
assert that significant minima occur in the interfacial energy whenever
the symmetry, orientation and lattice parameters of the two crystals
involved are such that there are a large number of atomic coincidences
across the interface plane.

Figure 1 () shows an example of such a general matching between (100)
faces of two face-centred cubic crystals with lattice parameters in the
ratio 4/2 :1 and relative orientation 45°. Depending upon the form of
v(r), the configuration of minimum energy may berelated to the ¢ coincident’
one. by a simple translation, as shown in fig. 1(d). Much more general
cases than this are, of course, possible.

When we are close to such a matched condition, as shown for a particular-
case in fig. 2, which is drawn in reciprocal space, then one of the distortion
vectors K (together with those grouped with it by symmetry) will be small
and most other K-vectors will be large. We can show that distortions
based upon this set of shortest K-vectors play adominant part in determining
the energy. To see this, suppose that all crystal distortions are small
so that all the Bessel functions in (19) can be replaced by the first term
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Fig. 1

o © o | O
(a) (b)

(@) Anexample of generalized matching between (100) faces of two f.c.c. crystals
with lattice parameters in the ratio 4/2:1 and relative orientation
45°. (b) For certain potentials the configuration of minimum energy
may differ from the ‘matched’ configuration by a simple relative
translation between the two lattices.

Fig. 2
K2

D) ® Ks
P e %%

Cad)
@
(A)

Portion of the reciprocal lattices, near the origin, of two similar crystals related
by a twist boundary of small angle. Principal distortion K-vectors
are shown joining reciprocal lattice points of the two sets.

in their series expansion, and consider the contribution to the energy from
a distortion pair Dy, D,’. This contribution is of the general form:

E~av(G)cos (G.B)G. (Dg+D,/)+BK(Dx+D¢')% . . (23)
where o and f are positive constants. The displacement B can be chosen
so that v(G) cos (G . B) is negative and variation of Dy, Dy’ (using (20)) to
minimize E leads to the results:

DDy ocKt; Hoc—[(G)2KE, . . . . (24)
which show the dominant role of distortions of small K. These results



Structure and Energy of Crystal Interfaces 109

clearly become invalid as K—0, but they do imply that the minimum at
the condition of generalized matching between the two lattices forms
the apex of a sharp cusp.

Such ‘conditions of near matching are of particular interest because it
is just these cases which can be validly treated by a dislocation model
such as that of van der Merwe. The elastic distortion associated with a
series of widely spaced dislocations in one dimension is of saw-tooth shape
-which has Fourier components of the form D, ~(—1)1D,. To
-compare this model with our present treatment we must look at the role of
distortion components of the form D, , where K is the smallest distortion
wave vector as discussed above. Those distortions with # > 1 enter through
termslike J,(2G,.Dyy)J;(2G, . D_y) associated with the potential component
v(Gy), or through J,(4G,.D,) associated with »(2G,), etc. It is clear
that these higher terms will contribute less to the total energy than does
the term with n =1 because their strain energy for a given amplitude is
higher by a factor n. We therefore expect D, to decrease with increasing
n, as required by the validity of the dislocation model, and to vanish when
nK passes outside the first Brillouin zone.

Tt is clear that, in its range of validity near the cusped energy minimum
corresponding to 1 :1 matching between substrate and overgrowth, the
the dislocation model may provide a more convenient means of discussing
the problem than does the present technique. When, however, K is an
appreciable fraction of the distance to the boundary of the first Brillouin
zone, the dislocation model is no longer appropriate and, as usually
formulated, it will average out much of the fine structure associated with
higher-order matching conditions.

It should also be pointed out that the present treatment automatically
includes all the symmetry -elements of the crystals.involved instead of
requiring an artificial symmetrization at the end of the calculation, as is
often the case with dislocation models. This is of particular importance
in the case of a twist boundary between two similar crystals, as shown in
fig. 2. It has often been the practice in dislocation models to treat such
a boundary by a superposition of two sets of dislocations with mutually
perpendicular K values to give a dislocation net. Two such sets do indeed
exist, corresponding to K; and K, in the figure, but their superposition
will not give a complete solution to the problem if there are potential
components at reciprocal lattice points other than those with coordinates
(1,0) or (0,m) respectively. Consider, for example, the point (1,1). If
this superposition approximation is used, then its potential v(G,,) enters
only through terms like J;(2Gy;.Dy;)J1(2Gy; . Dy,), which is of second
order, instead of through the first-order term J,(2G,;.Dy;). The present
treatment takes proper acount of these terms.

§ 6. CONCLUSION

We have presented the formal theory of a method for the calculation of
the energy of a wide class of crystal interfaces, which gives promise of
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realistic energy calculations without undue labour or computing time. The
formal exposition of the theory already exhibits several important features
associated with the interfacial energy, such as the cusped energy minima
near conditions of generalized atomic matching across the interface, and its
relationship to the dislocation model can be seen in the region where both
- approaches are valid. The present technique is, however, of more general
validity than an ordinary dislocation model and, being a variational
procedure, is also well adapted to first order calculations where a minimi-
zation with respect to a few dominant parameters will yield both an upper
bound and a reasonable approximation to the interfacial energy. Some
of these points will be pursued in a subsequent publication.
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