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ABSTRACT: A brief survey is given of the nature of nonlinearity and the transition to chaotic behaviour in vibrating
systems of interest in acoustics. Chaotic behaviour is illustrated by considering the response of a circular plate or thin
axisymmetric shell excited sinusoidally at its centre. Chaos sets in at an unexpectedly small amplltude and leads to large
excitation of non-driven modes. Some practical implications are considered.

1. INTRODUCTION

If there is one development in basic understanding that, over the
past ten years, has had greater impact than any other on the way
we look at physical phenomena, then it is the theory of nonlinear
and chaotic phenomena. Along with its associates, catastrophe
theory and fractal geometry, it is one of the most exciting areas
of research today in a whole range of classical areas of study
such as mathematics, mechanics, acoustics and fluid dynamics,
‘and it is beginning to penetrate into the world of quantum
phenomena. There was a special sectior: on acoustic chaos at the
13th ICA in 1989, a major conference on more general aspects of
chaos was held in Sydney early this year, and we even read about
the subject in the weekend newspapers|

It is not possible, in an article as short as this, to give any

extensive discussion of either chaos theory or its implications.
What we have tried to do, therefore, is to give an outline of the
basic background, and to illustrate it with some examples from
our own experience of the chaotic behaviour of a vibrating panel.
Not only is this potentially simple enough to understand in
detail — though we are as yet a good way from such under-
standing — but it has important applications in the real world of
acoustics and vibrations. For those who wish to delve deeper, we
recommend the popular non-technical book by Gleick [1]and the
extensive set of more technical papers edited by Cvitanovic [2].
There have also been numerous articles on chaos and fractal
geometry in the pages of Scientific American.

2. NONLINEARITY

A physical system is linear if its response amplitude is propor-
tional to the stimulus amplitude, all other things being kept
constant A simple linear spring (extension proportional to
applied force) is a familiar example, but linearity is assumed in
mechanics. (force o acceleration) and in electric phenomena‘
(Ohm’s law). Predictions of system behaviour based -on such
linear assumptions generally work well provided we do not
depart too far from equilibrium, but for extreme cases a linear
theory is inadequate — springs unwind, beams- buckle,
resistors get hot.

In acoustics and ordinary vibration applications we are
generally in a domain where linear theory is adequate, though
there are exceptions for such things as the sound production
mechanism of musical instruments [3]. Nonlinearity is more
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noticeable when the pressure amplitude of a sound wave
becomes appreciable in comparison with normal atmospheric
pressure, say greater. than 10 kPa or about 174 dB, as in an
explosion or a lightning flash or the passage of an aircraft at
supersonic speed. Then the temperature of the air in the
pressure crests rises significantly relative to that in the troughs,
which falls similarly. Because sound travels more quickly at
higher temperatures, this leads to distortion of the pressure
wave to an N-shaped shock wave.

The nonlinearity with which we shall be concerned here,
however, is of a much less ‘extreme variety, and concerns
only the gradual stiffening of various types of springs as their
deflection is increased. This is illustrated in Figure 1. This sort
of behaviour is found in many ordinary springs, and also in the
sideways deflection of plates, in which a tension force builds
up to assist the stiffness arising from simple bending. If f is
the distorting force and x the spring deflection, then this type
of behaviour can be written

f = ax + bx® (1)
where a is the normal spring stiffness and b/a measures the
severity of the nonlinearity. There are, of course, many more
complex forms of nonlinearity than that shown in equation (1);
the deflection of a slightly dished plate, for example, requires
the addition of a term in x2.

s

Force f

Extension x
Figure 1: Behaviour of a stiffening spring, as in equation (1).
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Figure 2: Nonlinear resonance curve, -as described
by equation (3) with o = 0.

If we think of the motion of a simple ioaded spring with
stiffness given by (1), acted on by a sinusoidal force f sin wt,
then this motion is described by the equation

mX + rx + ax + bx® = fsin wt 2)

where m is the loading mass and r is the viscous damping.
Dots signify differentiation- with respect to time, so that x is
velocity and X is acceleration. If we plot the amplitude
response of this system as the frequency w is varied, then we
get the distor_ted resonance curve shown in Figure 2, the small-
amplitude resonance frequency being wy = f(a/m)%. The
amount of distortion is préportional to the nonlinearity b/a. It is
convenient to simplify equation (2) by dividing by m and
changing the unit of time to 7 = wgt s0 that it can be written

R+ kX + X+ ax?2+ Bx3 = FsinQr {3)

where k = rimwg, 8 = bla, F = fla, and @ = wluy is the ratio
of the driving frequency to the small-amplitude resonance
frequency. A quadratic term ax? has been added for generality.
The parameter k is called the damping coefficient and is the
reciprocal of the quality factor Q. Equation (3} is closely related
to.the Duffing equation, which has both the linear and quadratic
terms omitted, so that the restoring force is simply 8x3. The
Duffing equation is nonlinear at all amplitudes and has been
extensively studied.

We can hear the effects of this nonlinearity quite easily with
a rather loose metal string on a musical instrument such as a
guitar. if we pluck the string to large amplitude, rather than
exciting it with a sinusoidal force, then its oscillation decays
along the spine of the curve, shown as a broken line in Figure
2, and the sound dies away with a twang as the pitch falls.
Experiments" with sinusoidal excitation of such a metal string
show that we can have a sudden fall in amplitude from point A
to point B if we slowly increase the frequency w while keeping
the force f constant. This is an elementary example of a
catastrophe — a large change in some physical result (the
amplitude) for a very small change in the excitation (the
frequency in this case) near a critical point A. Catastrophe
theory deals with more general features of this sort of behaviour.

3. ORBITS AND ATTRACTORS

We are used to looking at oscillatory phenomena in two
complementary ways — either we examine the waveform with
an oscilloscope, or we look at the frequency spectrum using,
for example, an FFT (Fast Fourier Transform) analyser. These
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Figure 3: (a) Waveform, spectrum and orbit in phase space for a
nearly sinusoidal solution of equation (3) corresponding to a slightly
dished plate withk = 0.02, « = 0.3 8 =01,Q=2 F = 12
(b) bifurcation and generation of a subharmonic of order 2 for the
same system with F = 20,

two approaches, provided we record the phases of the spectral
components, give us exactly the same information, and one
representation can be derived from the other mathematically.
For discussions of chaotic behaviour, it turns out that a
rather different representation is also useful. The time behaviour
of a vibrating system can be described by giving the value of
itc displacement x at all times t, but it can also be described if
we know the displacement x and the velocity v = x, which is

* Just the slope of the x(t} waveform, at every point. We can

then describe the behaviour by plotting the motion of the point

. representing the system on a graph in which the axes are x

and:v. If the waveform is repetitive, then the curve in (x,v)
space, which is called phase space, is a closed orbit which
repeats itself in every cycle of the motion. This is illustrated in
Figure 3a for a nearly sinusoidal wave, such as would arise
from solution of a particular case of equation {3) at rather
small amplitude. If the wave were exactly sinusoidal then the
curve would be an ellipse. There is actually a value of the time
parameter t or 7 associated with every point on the orbit, and
we will need to know this later.

A simple repetitive wave represents a steady state but, if we
apply a sinusoidal force to a system, it takes an appreciable
time to settie down. This approach to a steady state can be
represented in phase space, as well as in the {x,t) time domain
seen on an oscilloscope. Figure 4a shows what happens for an
arbitrary starting condition — the initial orbit can begin
anywhere in phase space, but it is “attracted” towards the
final stable orbit and eventually coincides with it. The stable
orbit is then called an attractor for this particular motion. If the
exciting force is zero, then the attractor is simply the point
x = 0, v = 0, as in Figure 4b.

To further simplify the presentation it is useful to employ a
device introduced by the French mathematician Poincaré,
and hence called a Poincaré section. The easiest way to think
of this is to recognise that we are dealing with a system driven
by a regular sinusoidal force, according to equation (3). The
time scale is thus fixed by this external force, and we can
imagine taking a flash photograph of the phase space just once
in each cycle, at a fixed phase of the external force, and

- plotting the position of the point representing the system

response. Once we are on the stable orbit, this always shows
up as a single point on the section, while the behaviour of the
system in approaching the steady state shows up as a
sequence of points steadily approaching this limit point.
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Figure 4: (a) Approach to the steady state, showing a periodic
attractor orbit; (b) the same, showing a point attractor.

4. BIFURCATIONS AND
STRANGE ATTRACTORS

All this is quite straightforward and introduces nothing unex-
pected. It is possible to calculate the approach of the system
to its attractor by simply ‘integrating the equation (3} from its
given starting conditions. With a modern desk-top micro-
computer this takes only a few seconds. However, playing
around with such calculations soon turns up some very strange
behaviour. Actually it was found first for even simpler equations,
but the generalised Duffing equation (3) is most suited to
our discussion here. The first thing to be discovered is that,
for particular values of the relative frequency Q and force
amplitude F, the orbit doubles, or bifurcates. This shows up as
a period doubling on the waveform display, a subharmonic of
order 2 on the frequency spectrum, or a double orbit in phase
space, as illustrated in Figure 3b. This phenomenon appears on
the Poincaré section as two point attractors, which we have
.not bothered to illustrate.

Even this bifurcation behaviour is easy to accommodate
among our usual ideas — it is simply the nonlinear driving of
the mode at half the driving frequency, and occurs most easily
when the driving frequency is about twice the free mode
frequency. The other components in the spectrum in Figure 3b
then simply arise as nonlinear distortion products. Rather
surprisingly, however, an increase in the force amplitude or a
decrease in the damping sometimes leads to further bifurcations,
giving subharmonics of order 4, 8, and so on. Feigenbaum [2]
has shown that this behaviour is governed by universal rules.
For the particular equation we are studying, however, this does
not appear to happen; if the force is increased outside a small
range, then the system reverts to simple periodic behaviour.
However, for other small ranges of frequency and force we
find more complex behaviour such as 3rd or 5th order sub-
harmonics. The fifth order case is illustrated in Figure 5a.

Further computer integration of the equations, however,
shows up an entirely different and unexpected behaviour. For
larger values of the driving force, the orbit simply never repeats|
The orbits scribble over a large region of phase space when
they are drawn in full as in Figure bb, and the spectrum
shows a large amount of wideband noise, with superposed
peaks at the driving frequency and s6r_ne of its harmonics or
subharmonics. This behaviour is called chaotic — but it is
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Figure 5: (a) Subharmonic splitting of order 5 for the system ot
Figure 3(a) with F = 12; (b} chaotic behaviour for the same system
withQ =1, F= 23
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Figure 6: The strange attractor generated by
the system of Figure 5(b).

deterministic chaos, in that it results from exact integration of
the equation (3), and we get exactly the same result every time.

The beauty and unexpected structure of chaos appears when
we examine the behaviour in the Poincaré section plane,
plotting one point per orbit at a defined phase of the external
force. After the initial transient has died down, the points on
the section plane are not simply randomly placed, but all lie
upon a complicated swirling figure of the type shown in
Figure 6. It is clearly some sort of more complicated attractor
for the chaotic motion and, with good reason, it is called a
strange attractor. Its form is characteristic of the parameter
values in the equation representing the physical system,
together with the values of the external force amplitude and
frequency. Transition to chaotic behaviour is again a cata-
strophic change — the system goes from a simple attractor to
a chaotic attractor for a very small change in parameter values.
In some cases there is a progression through sudden bifurcations
of progressively higher order, as mentioned above.
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If we watch the points, one per orbit, building up on the
attractor, then we note that their placing is apparently random
— though it is deterministically random in that the orbits can
be calculated exactly. The essence of chaos, however, is that
the exact sequence of orbits depends with the utmost
sensitivity upon the initial conditions. For an ordinary atfractor,

two orbits or representative points that start off very close

‘together remain close together, and indeed slowly approach
one another. In a chaotic system, however, the points diverge
exponentially, at least for a start, so that very soon their
subsequent motion is quite uncorrelated:; This behaviour in
phase space and in its Poincaré section reflects what is
occurring in real physical space — detailed behaviour is very
sensitively. dependent on initial conditions.

Examination of the geometry of strange attractors shows
that they are much more complex objects even than they
appear at first glance. The structure,-indeed, remains equally
complex if they are examined at higher and higher magnification
— they are self-similar or fractal objacts. Only & few attractors
generated from differential equations have been examined in
detail, but there is a wealth of beautiful pictorial information
available on fractal objects, such as the Mandelbrot set,
generated from simpler nonlinear algebraic equations [1,4,5].

5. PHYSICAL EXAMPLES

Very many experimental studies of the occurrence of chaotic
‘behaviour have been made for appropriate nonlinear-systems.
Many of the most convenient use elsctrical resonant circuits-
with nonlinear inductive elements, since these are easy to
measure and are appropriately one dimensional, in the sense
that the charge on the capacitor can be taken as the physical
variable x, and the quantity v = x is then the current through the
inductive element. More complex examples with larger numbers
of variables abound.

Our experiments have concerned the vibration of a freely
suspended metal plate, excited sinusoidally at its centre. The
stiffness of the plate provides the linear part ax of the restoring
force in (1), and the tension forces, which vary as the square of
the amplitude and have a normal component additionally
proportional to amplitude, provide the cubic restoring force
term bx3. The plate itself is an extended system and has an
infinite number of normal vibration modes, but we can make
an approximate separation of the motion so that each mode is
described by a nonlinear equation of the form (3), with different

value of the mode frequency wy,, and with extra nonlinear terms _

linking the modes together. The mathematics is thus rather
complicated and has not yet been expiored in detail,

In the experiments, the plate was cut from steel sheet about
1 mm thick and had a diameter of about 40 cm. it was held
vertically by light strings passing through holes near its edge,
and was excited with a small B&K shaker attached to its
centre. The displacement at any point could be measured with
a B&K capacitive transducer — essentially the electrode of a
condenser microphone with the plate forming the diaphragm
— and the velocity by integrating the signal from a B&K
subminiature accelerometer attached to the surface. Actually
one could simply integrate this accelerometer signal once more
to find the displacement; but a direct method has some
advantages.

Exploration of the ordinary linear vibration modes showed
that the two of lowest frequency were the (2,0) and (0,1) modes
illustrated in Figure 7, the first number in the description
giving the number of nodal diameters and the second the
number of nodal circles. The {2,0) mode had a frequency of

about 39 Hz and a Q value of 850 (k = 0.001) while the (0,1)

mode had frequency 69 Hzand Q = 330 (k = 0.003). The (2,0)
mode is actually a degenerate pair with the same frequency,

(0,1)

(2.0)

Figure 7. (0,1) and (2,0) modes of a freely suspended disc.

the nodal lines of one being rotated by 45° relative to the
other. The linear behaviour of these- modes was quite unremark-
able. The {0,1) mode was efficiently driven at the centre of the
plate, but the (2,0) modes were nearly inactive, because their
nodal lines cross there.

Interesting behaviour was found when the frequency was
set at about 756 Hz, near to that of the (0,1) mode, and the
driving force was increased. Quite suddenly, for an 0,1)
amplitude of only a few tenths of a millimetre at the disc
centre, the (2,0) mode became active at a frequency exactly
half the driving frequency and reached an amplitude of about
1 mm at the disc edge. The orbit, as measured some distance
from the disc centre, bifurcated, and a subharmonic of order 2
appeared on the FFT analyser. At a rather increased level of
drive, giving an (0,1) mode amplitude of about 0.5 mm at the
centre, the whole vibration became wildly chaotic in both
modes, and the vibration amplitude at the disc edge exceeded
2 mm. Fortunately the low frequency and the small size of the
disc meant that the radiated sound intensity was smalll For
other combinations of force and frequency near these valuss,
subharmonics of other orders were observed, while if the
shaker amplitude was increased much above that necessary
for chaotic behaviour, the response again became simple.

One might be tempted to simply take this as a nice illustration
of the general behaviour discussed above, except for one
feature. This is that, while numerical integration of equation (3)
leads one to expect a transition to chaos at an amplitude
such that the nonlinear terms comfortably exceed the linear

“term (8x® > 1), the experimentally observed transition occurs

for an amplitude nearly 10 times smaller, so that 8x* ~ 0.001.
The reason for this extreme sensitivity is not clear, but seems
likely to be associated with the existence of two {(or more)
nonlinear modes, and the particular nature of the nonlinear
coupling between them. It does not appear to be accounted for
by the smaller damping of the experimental system. We
discuss the significance of this behaviour in the final section.

Very similar behaviour was found for the case of an orchestrai
cymbal, which is essentially a shallow spherically-dished sheli
about 40 cm in diameter, and for a large Turkish gong, again a
dished shell 50 cm in diameter and surrounded by a stiff
conical flange [6]. The curvature of the shell adds a quadratic
term ax? to equation (3). The conical flange on the gong
reverses the frequency order of the two low-frequency modes
of the gong and adds a nodal circle to (2,0}, so that these
modes are (0,1) at 96 Hz and (2,1) at about 180 Hz. There is
also a mode (1,1) at 136 Hz, and many modes of higher
frequency. The cymbal modes were not investigated in detail
but, because of the high turvature of the shell, the (0,1) mode
frequency was about 600 Hz.
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For both these systems the behaviour when excited sinu-
soidally at the centre at a frequency close to that of the (0,1)
mode was very similar to that of the simple plate. Subharmonics
of various orders, particularly 2, 3 and 5, were observed, and
the onset amglitude for chaotic behaviour was again of order
1 mm. The main difference was that, because of the higher
frequencies involved, and the flange effectively baffling the
gong, the radiated sound intensity was large, almost painfully
so in the case of the cymball It was also noticeable that the
timbre of the sound in the chaotic regime was very similar to
that produced when the gong or cymbal was simply struck a
heavy blow, as in normal playing.

6. CONCLUSION

it would be a mistake to regard nonlinear and chaotic behaviour
as simply an interesting curiosity, for it has both profound
basic significance and important practical consequences. The
proliferation of current reséarch literature attests to the former
fact, and it is appropriate here to comment only briefly on the
latter.

The behaviour of musical instruments such as gongs and
cymbals is important to musicians, but is hardly seen as being
significant in the larger world. It is often in musical instruments,
however, that acoustic phenomena are most clearly exhibited,
and for this reason their study can give valuable pointers in
more practical fields. In this connection, it is perhaps the
observation of chaotic behaviour and nonlinear mode coupling
at force amplitudes several orders of magnitude smailer than
expected from consideration of a simple Duffing equation that
is most significant. Once chaotic behaviour has been initiated,

the system then displays large vibration amplitudes in modes
that might have been expected to be quiescent.

The most direct application of these ideas is to the vibration
of panels, not necessarily of circular shape, under the influence
of periodic exciting forces, generated for example by re-
ciprocating machinery. If conditions are such that the response
becomes chaotic, then panel ampiitudes may greatly exceed
those normally expected and may be in unexpected modes,
leading to unpredicted and perhaps dangerous stresses on the
structure. The same thing may apply to the flutter of panels
under aerodynamic forces, where the initial vibration is to a
large extent seif-excited, rather than provided by an external
force. Even the case of a plate or shell may be an unduly
restricted model, for similar behaviour might well be expected
of any extended system with muitiple modes and appropriate
nonlinearity. Certainly chaotic behaviour is a subject of which
we will hear a great deal more in the future.
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