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The low-frequency mode transition in the free in-plane vibration of beams with
varying curvature and cross-section is examined by using perturbation analysis.
A simpli"ed zeroth order equation for beam vibration in the region of the mode
transition is derived. This equation shows explicitly which modes undergo
a transition for a particular type of beam curvature and cross-section. Analytic
approximations for frequency and mode shape are derived by the cases of beam
curvature represented by symmetric and antisymmetric polynomials and their
validity is illustrated by comparison with numerical solutions. Many features of
mode transition phenomenon are revealed analytically, including the e!ect of beam
curvature on mode shape during the transition stage. The similarities and
distinctions between the low mode and the high mode number transitions are
discussed.
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1. INTRODUCTION

Vibration of curved beams with varying cross-section has continued to attract the
attention of researchers over the last two decades [1}11]. A phenomenon of
transition of modes from extensional into inextensional, which occurs with increase
in beam curvature, has been observed by several authors [7}9]. The possibility of
the interpretation of this phenomenon in terms of two separate approximate
theories (membrane and #exural vibration of a straight beam) has been suggested in
reference [10], where the vibration of a particular case of an S-shaped strip of
uniform cross-section has been studied. The "rst comprehensive study of the mode
transition phenomenon in vibration of beams with arbitrarily varying curvature
and cross-section is given in reference [11] on the basis of asymptotic analysis. This
study revealed that for beams with hinged or clamped ends, with increasing
curvature some modes undergo the transition from the #exural mode of a straight
beam, through an extensional stage, into an inextensional mode, the frequency and
022-460X/99/460069#22 $30.00/0 ( 1999 Academic Press



70 T. TARNOPOLSKAYA E¹ A¸.
mode shape of which is closely approximated by those of the next higher mode of
the same symmetry of a straight beam. During the stage of extensional transition,
the frequency is approximated by the frequency of the associated membrane
vibration problem, while the mode shape is a superposition of the mode shape of
a membrane and the mode shape of #exural vibration of a straight beam. However,
the asymptotic analysis presented in reference [11] is essentially limited to high
mode-number vibration and therefore the results of the analysis are not applicable
to the lower region of the spectrum.

In the present paper, we examine the vibrational behaviour of beams with
arbitrarily varying curvature and cross-section in the lower region of the spectrum.
We develop an approach which allows a simpli"cation of the equations of free
vibrations of a curved beam with varying cross-section in the low region of the
spectrum and illuminates many features of the mode transition phenomenon.
Thus, for example, we derive an approximate zeroth order equation of beam
vibration which shows explicitly whether or not the mode transition takes place for
a particular type of beam curvature and cross-section.

In the case of beams with uniform cross-section and arbitrarily varying
curvature, the zeroth order equation also explicitly reveals the e!ect of beam
curvature on mode shape during the transition stage. This equation is su$ciently
simple to make an analytical solution possible for speci"c types of beam curvature,
and we illustrate the derivation of analytic approximations for frequency and mode
shape by the example of beams with curvature function represented by symmetric
and antisymmetric polynomials. We then use these analytic approximations to
study the vibrational behaviour in the region of mode transition and establish
the similarities and distinctions between the high and the low mode-number
vibrational behaviour.

For thicker beams, higher order approximations are required to describe the
completion of the transition stage, and we illustrate the derivation of a "rst order
analytic approximation by the example of a beam with constant curvature. Finally,
we demonstrate the validity of the derived approximations by comparison with
numerical simulations for speci"c types of beam curvature.

2. GOVERNING EQUATIONS

Consider the equations of the free in-plane vibration of a beam with arbitrarily
varying curvature and cross-section [11]

!e6 M![IiN 2 (u@!iN v)]@#i6 [iN I(u@!iN v) ]@

#[iN I(v@#iN v)@]@!i6 [I (v@#iN u) @]@N#[AM (u@!iN v)]@#jAM u"0, (1)

!e6 M![IiN 3 (u@!iN v)![i6 I (u@!iN v) ]A#iN 2I(v@#iN u)@#[I(v@#iN u)@]AN

#AM (u@!iN v)iN #jAM v"0, (2)

where u and v are non-dimensional longitudinal and transverse displacements,
i6 "il, i is the curvature and l is the length of the beam, AM "A/(h

0
d
0
), A is

the cross-sectional area of the beam, h
0

and d
0

are the characteristic dimensions of
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the cross-section in the plane of initial curvature and in the normal plane
respectively, I":

A
M zN 2dAM , zN"z/h

0
, z is the co-ordinate measured along the normal

to the centreline of the beam, e6 is the slenderness parameter of the beam and j is
non-dimensional eigenvalue

e6"
h2
0

l2
, j"

ol2u2

E
.

The primes denote di!erentiation with respect to the non-dimensional co-ordinate
sN"s/l measured along the beam centreline. If we introduce the following scaling

K"

j
e

; iL "
iN

Je
; uN "

u

Je
, (3)

where e"eN /12, then equations (1) and (2) can be rewritten as

!eM!e[IiL 2(uN @!iL v)]@#eiL [iL I(uN @!iL v)]@#[iL I (v@#eiL uN )@]@

!iL [I(v@#eiL uN )@]@N#
1
12

[AM (uN @!iL v) ]@#
e
12

KAM u"0, (4)

e2IiL 3 (uN @!iL v)#e[iL I (uN @!iL v)]A!eiL 2I (v@#eiL uN )@

!MI(v@#eiL uN )@]A#
AM
12

i( (uN @!iL v )#
1
12

KAM v"0. (5)

In the present paper, we consider the behaviour of the eigenvalues and
eigenfunctions as the non-dimensional curvature i6 of the beam gradually increases.
For this purpose, it is convenient to introduce a one-parameter family of curvature
functions of the form

i"bK(sN ),

where the parameterization is de"ned by b and the functions K(sN ) is "xed. Then,
i6 "bM K(sN ), iL "bK K(sN ), where bM "bl and bK "bM /Je. We assume that an appropriate
normalization condition for eigenfunctions is chosen so that v"O (1). Estimates for
the order of magnitude of the terms in equations (4) and (5) can then be obtained on
the basis of the results described in reference [11], namely

iL &O (e~1@2), K&O(iL 2), uN &O(iL 1@2 ).

The number of oscillations in the non-dimensional amplitude of transverse and
longitudinal displacements is of the order i( 1@2. Taking the above into account and
separating out the parts of the same order of magnitude in each term of equations
(4) and (5) yield

s2[IK2 (uN @!iL v)]@!s2K[KI(uN @!iL v)]@!s[KI(v@#sKuN )@]@

#Ks[I(v@#sKuN )@]@#
1
12

[AM (uN @!iL v)]@#
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12bK
KAM uN "0, (6)

s2IbK K3(uN @!iL v )#s[KI(uN @!iL v)]A!sbK IK2 (v@#sKuN )@
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12

iL (uN @!iL v)#
1
12

KAM v"0, (7)
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where s"ebK "hb/J12. Obviously, equations (6) and (7) contain the parameter
s which is small for relatively thin beams in the region where the mode transition
takes place. In the following section, a perturbation analysis of these equations will
be performed for small s.

In the present paper, we consider the boundary conditions corresponding to
clamped ends, that is

uN "0 at sN"0, 1, (8)

v"v@"0 at sN"0, 1. (9)

It is straightforward, however, to modify the results for a hinged end arrangement.

3. PERTURBATION ANALYSIS

In the following analysis, the parameter s is considered to be small. We use
a perturbation approach to seek solution of the eigenvalue problem (6}7) of the
form

K(s)"
=
+
k/0

skK
k
, (10)

uN (sN , s )"
=
+
k/0

skuN
k
(sN ), (11)

v (sN , s )"
=
+
k/0

skv
k
(sN ). (12)

Substituting these expansions into equations (6) and (7) and comparing powers of
s yields the following sequence of equations.

zeroth order approximation:

[AM (uN @
0
!iL v

0
)]@"0, (13)

!(12IvA
0
)A#AM iL (uN @

0
!iL v

0
)#K

0
AM v

0
"0, (14)

,rst order approximation:

!(12IKvA
0
)@#K(12Iv A

0
)@#[AM (uN @

1
!iL v

1
)]@#

AM K
0
uN
0
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"0, (15)

[12IK (uN @
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0
)]A!12IbK K2vA

0
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1
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0
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1
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0
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0
v
1
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The solutions must all satisfy the boundary conditions

uN
k
(0)"uN

k
(1)"0, (17)

v
k
(0)"v

k
(1)"0, (18)

v@
k
(0)"v@

k
(1)"0, (19)

where k is the order of the approximation.
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3.1. ZEROTH ORDER APPROXIMATION AND PROPERTIES OF MODE TRANSITION

Consider the zeroth order equations (13) and (14) with boundary conditions
(17)}(19). It is convenient to rewrite equations (13) and (14) as a single equation. On
integrating (13) and using the boundary condition (17) we obtain

AM (uN @
0
!iL v

0
)"!P

1

0

(AM iL v
0
#AM @u

0
)dsN , (20)

and substituting this expression into equation (14) yields

!(12IvA
0
)A#K

0
AM v

0
"iL P

1

0

(AM iL v
0
#AM @u

0
)dsN . (21)

Note that equation (21) di!ers from the equation of vibration of a straight beam
with varying cross-section by the term on the right-hand side and therefore the
vibrational modes of a curved beam generally di!er from those of a straight beam.
The exception is the situation when

P
1

0

(AM iL v
0
#AM @u

0
)dsN"0, (22)

and in this case the frequency and mode shape of the curved beam are given, up to
the zeroth order, by the corresponding functions for a straight beam. Obviously, no
mode transition occurs in this case. This is the case, for example, for some modes of
beams whose curvature and cross-section are symmetric or antisymmetric. Hence,
condition (22) shows that in the case when both the curvature and cross-section of
the beam are functions with even symmetry, the modes antisymmetric in v
are una!ected by curvature increase, while the modes symmetric in v undergo
a mode transformation. In the case when the curvature is an antisymmetric
function and the cross-section is a symmetric function, the modes symmetric in
v remain unchanged, while the modes antisymmetric in v are subject to mode
transition.

In the case of a beam with varying curvature and uniform cross-section, equation
(21) reduces to the scalar equation

!vAA
0
#K

0
v
0
"iL P

1

0

iL v
0
dsN . (23)

The solution of equation (23) takes a form

v
0
"v

0h
#v

0p
, (24)

where v
0h

is the solution of the homogeneous equation

!vAA
0
#K

0
v
0
"0 (25)

which represents the vibration of a straight beam, while v
0p

is a particular solution
of equation (23). We can see that the transverse displacements of a curved beam
during the transition stage are a superposition of a transverse displacement of
a straight beam and a function depending on beam curvature. The exceptions are



74 T. TARNOPOLSKAYA E¹ A¸.
the modes for which

P
1

0

iL v
0
dsN"0, (26)

and in this case no mode transition occurs. Obviously, for a beam whose curvature
is a symmetric or antisymmetric function, only those modes possessing the same
type of symmetry in the transverse component of displacement as the beam
curvature function undergo a mode transition.

A particular solution of equation (23) can be obtained for speci"c types of beam
curvature. In this paper, we consider the beam curvature represented by
polynomials of degree up to 3, in which case the solution of equation (23) is
particularly simple. However, it is straightforward to extend the analysis to other
types of beam curvature, using the approach described below. For a beam
curvature represented by a polynomial of degree up to 3, a particular solution of
equation (23) is given by

v
0p
"

iL
K

0
P

1

0

iL v
0
dsN (27)

and we can see that in this case the additional component in the transverse
displacements that appears during the transition stage is proportional to the beam
curvature function.

The eigenvalue problem (23) can be solved analytically for symmetric and
antisymmetric curvature functions, as we illustrate below.

3.1.1. Symmetric polynomial curvature function

For clarity, we consider a beam curvature function in the form of a symmetric
polynomial of up to second degree. It is straightforward, however, to extend the
results of the present section to symmetric polynomials of higher degree.

In the case of a symmetric curvature function, the zeroth order approximation
for the modes antisymmetric in v can be obtained from the equation of vibration of
a straight beam. Of interest are the modes symmetric in v, as such modes undergo
a mode transition, and in this case the solution v

0h
of the homogeneous equation is

given by

v
0h
"CMcosh[K1@4

0
(sN!1

2
)]#C

1
cos[K1@4

0
(sN!1

2
)]N, (28)

where C and C
1

are arbitrary constants. The expression for :1
0

iL v
0
dsN can be found

by multiplying equation (27) by i( and integrating it, so that

P
1

0

iL v
0
dsN"

K
0
bK :1

0
Kv

0h
dsN

K
0
!bK 2 :1

0
K2dsN

, (29)

and therefore

v
0
"v

0h
#bK 2

K :1
0
Kv

0h
dsN

K
0
!bK 2 :1K2dsN

. (30)

0
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The equation for the non-dimensional eigenvalue K
0

can be obtained by
substituting the boundary conditions (18) and (19) into the last equation, which
gives

bK 2K(1) :1
0
K (sN )Mcosh[K1@4

0
(sN!1

2
)]#C

1
cos[K1@4

0
(sN!1

2
)]NdsN

K
0
!bK 2 :1

0
K2 (sN ) dsNN

#cosh
K1@4

0
2

#C
1

cos
K1@4

0
2

"0, (31)

where

C
1
"

K(1)K1@4
0

sinh
K1@4

0
2

!K @(1) cosh
K1@4

0
2

K (1)K1@4
0

sin
K1@4

0
2

#K @(1) cos
K1@4

0
2

. (32)

Although equation (31) cannot be solved for the non-dimensional eigenvalue K
0

as
a function of non-dimensional curvature bK , it can be solved explicitly for the inverse
function bK (K

0
)

bK 2"K
0Acosh

K1@4
0
2

#C
1

cos
K1@4

0
2 B GAcosh

K1@4
0
2

#C
1

cos
K1@4

0
2 B P

1

0

K2(sN )dsN

!K (1) P
1

0

K2 (sN ) GcoshCK1@4
0 AsN!

1
2BD#C

1
cosCK1@4

0 AsN!
1
2BDH dsN H

~1
.

(33)

Equation (33) can be further simpli"ed by substituting a particular form of beam
curvature function K(sN ). As an example of a curvature function with even
symmetry, we consider a constant curvature K(sN )"1. In this case, equation (33)
reduces to

bK 2"K
0

sin
K1@4

0
2

cosh
K1@4

0
2

#sinh
K1@4

0
2

cos
K1@4

0
2

sin
K1@4

0
2

cosh
K1@4

0
2

#sinh
K1@4

0
2

cos
K1@4

0
2

!

4
K1@4

0

sin
K1@4

0
2

sinh
K1@4

0
2

.

(34)

This equation illustrates how the eigenvalues change with increasing
non-dimensional curvature. The eigenvalues of a curved beam take on values lying
between the root of the equation

sin
K1@4

0
2

cosh
K1@4

0
2

#sinh
K1@4

0
2

cos
K1@4

0
2

"0, (35)

and the horizontal asymptote de"ned by the nearest larger root of the equation

sin
K1@4

0
2

cosh
K1@4

0
2

#sinh
K1@4

0
2

cos
K1@4

0
2

!

4
K1@4

0

sin
K1@4

0
2

sinh
K1@4

0
2

"0. (36)
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The approximate value of the non-dimensional eigenvalue K* which de"nes
a horizontal asymptote K"K* can be found by solving equation (36) under the
assumption that K~1@4

0
is small. With accuracy up to o (K~1@4) this yields

K*"A!
n
4
#nk#1B

4

C1#S1!
4

!n/4#nk#1D, (37)

where k"2 corresponds to the asymptote which is approached during the
transition of the lowest symmetric mode. Note that the root of equation (35)
represents the eigenvalue of a straight beam, while the value given by equation (37)
is smaller than the next successive root of equation (35). This means that during the
transition stage the eigenvalue of the curved beam increases towards, but does not
reach, the eigenvalue of the next higher mode of a straight beam with the same
symmetry.

We now examine how the mode shape changes during the mode transition stage.
The zeroth order approximation for the transverse components of the
eigenfunction v

0
is given by

v
0
"CGsin

K1@4
0
2

coshCK1@4
0 AsN!

1
2BD#sinh

K1@4
0
2

cosCK1@4
0 AsN!

1
2BD

!sin
K1@4

0
2

cosh
K1@4

0
2

!sinh
K1@4

0
2

cos
K1@4

0
2 H (38)

and it can be seen that it di!ers from the normal component of the eigenfunction of
a straight beam by an additive constant (last two terms in curly brackets). The value
of this constant is zero at zero curvature and gradually increases with increase in
non-dimensional curvature. However, when the eigenvalue approaches the
asymptotes given by equation (36), the value of the constant decreases and
approaches the limit (4/K1@4

0
) sin(K1@4

0
/2) sinh(K1@4

0
/2). Thus, an additional

component remains in the transverse displacements even on completion of the
transition stage.

It is interesting to see how the magnitude of the extension varies during the
transition stage. A zeroth order approximation for the tangential component of the
eigenfunction can be obtained as

u
0
"bK A P

sN

0

v
0
dsN!sN P

1

0

v
0
dsN B"

bK C
K1@4

0
Gsin

K1@4
0
2

sinhCK1@4
0 AsN!

1
2BD

#sinh
K1@4

0
2

sinCK1@4
0 AsN!

1
2BD#4 A

1
2
!sN B sin

K1@4
0
2

sinh
K1@4

0
2 H (39)

and the extension can be calculated as

e"Je (uN @
0
!bK v

0
)"CbK Csin

K1@4
0
2

cosh
K1@4

0
2

#sinh
K1@4

0
2

cos
K1@4

0
2

!

4
K1@4

0

sin
K1@4

0
2

sinh
K1@4

0
2 D . (40)
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It can be seen that the extension tends to zero at the end of the transition stage,
as the eigenvalue approaches the asymptotes given by equation (36), and is at
its maximum when the eigenvalues take intermediate values between these
asymptotes.

3.1.2. Antisymmetric polynomial curvature function

In a similar manner, zeroth order approximations for the eigenvalues and
eigenfunctions can be obtained for the case of beam curvature represented by an
antisymmetric polynomial. As before, we consider a polynomial up to third degree
for simplicity. In the case of antisymmetric curvature, the modes symmetric in
v remain unchanged, while the modes antisymmetric in v undergo the mode
transition. The transverse displacements for the modes antisymmetric in v are given
by the expression (27) where

v
0h
"C Msinh[K1@4

0
(sN!1

2
)]!C

1
sin[K1@4

0
(sN!1

2
)]N (41)

and C
1

is given by

C
1
"

K(1) K1@4
0

cosh
K1@4

0
2

!K@(1) sinh
K1@4

0
2

K(1)K1@4
0

cos
K1@4

0
2

!K @ (1) sin
K1@4

0
2

. (42)

The equation for the non-dimensional eigenvalue has the form

bK 2"K
0Asinh

K1@4
0
2

!C
1
sin

K1@4
0
2 B GAsinh

K1@4
0
2

!C
1

sin
K1@4

0
2 B P

1

0

K2(sN )dsN

!K (1) P
1

0

K (sN ) GsinhCK1@4
0 AsN!

1
2BD!C

1
sinCK1@4

0 AsN!
1
2BDHdsN H

~1

(43)

Equation (43) can be further simpli"ed by considering a particular form of
curvature function, and as an example of an antisymmetric polynomial curvature
function we consider a linear antisymmetric curvature given by

iL "bK (2sN!1).

The equation for the eigenvalues (43) then takes the form

bK 2"K
0Asinh

K1@4
0
2

cos
K1@4

0
2

!sin
K1@4

0
2

cosh
K1@4

0
2 B C

1
3 Acos

K1@4
0
2

sinh
K1@4

0
2

!cosh
K1@4

0
2
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K1@4

0
2 B!

16
K3@4

0
A
K1@4

0
2

cosh
K1@4

0
2

!sinh
K1@4

0
2 B

]A
K1@4

0
2

cos
K1@4

0
2

!sin
K1@4

0
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. (44)
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A zeroth order approximation for the transverse component of the eigenfunction
v
0

is given, up to multiplicative constant, by

v
0
"A

K1@4
0
2

cos
K1@4

0
2

!sin
K1@4

0
2 B sinhCK1@4

0 AsN!
1
2BD!A

K1@4
0
2

cosh
K1@4

0
2

!sinh
K1@4

0
2 B sinhCK1@4

0 AsN!
1
2BD!(2sN!1)

K1@4
0
2 Asinh

K1@4
0
2

cos
K1@4

0
2

!sin
K1@4

0
2

cosh
K1@4

0
2 B , (45)

while a zeroth order approximation for the extension is given, up to multiplicative
constant, by

e"bK C!
16

K3@4
0
A
K1@4

0
2

cos
K1@4

0
2

!sin
K1@4

0
2 B A

K1@4
0
2

cosh
K1@4

0
2

!sinh
K1@4

0
2 B

#

1
3 Asinh

K1@4
0
2

cos
K1@4

0
2

!sin
K1@4

0
2

cosh
K1@4

0
2 BD . (46)

One can see that the features of the mode transition in the case of antisymmetric
beam curvature are similar to those for symmetric curvature. With an increase in
the non-dimensional curvature, the eigenvalue increases from the eigenvalue of
a straight beam towards an asymptotic limit that is lower than the eigenvalue of the
next mode of the straight beam with the same symmetry. The mode shape gradually
transforms, with increase in non-dimensional curvature, from the mode shape for
a straight beam into the mode shape that resemble that of the next higher mode of
a straight beam. There is however an additional component in the transverse
displacements (last term on the right-hand side of equation (45)) that is
proportional to the beam curvature function and attains its maximum during the
transition stage. This component then decreases as the eigenvalue approaches the
asymptote and the vibration transforms into one that is nearly inextensional, but it
does not disappear completely even on completion of the transition stage.

3.2. FIRST ORDER APPROXIMATION FOR EIGENVALUES OF BEAMS WITH
UNIFORM CURVATURE

While a zeroth order approximation is su$ciently accurate throughout the
transition region for thin beams (e&10~6 and smaller), a higher order
approximation is required to describe the frequency of thicker beams. In this
section, we derive a "rst order approximation for the eigenvalues of a beam with
constant curvature. In a similar manner, a "rst order approximation can be
obtained for other types of curvature functions.

In the case of a beam with constant curvature, equations (15) and (16) take the
form

bK (uN @
1
!bK v

1
)@#K

0
uN
0
"0, (47)
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0
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1
!bK v

1
)#K

0
v
1
#K

1
v
0
"0. (48)
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We now examine equations (47) and (48) with boundary conditions (17)}(19).
Consider the eigenmodes with even symmetry in v, that is :1

0
vdsNO0. On

integrating equation (47) and using boundary condition (17) we obtain
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Substituting this last expression and the expression for v
0

and vA
0

into equation (48)
gives, for v
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The solution can be sought as a sum of solution of the homogeneous equation
v
h1

and a particular solution of equation (50) v
p1

v
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#v

p1
, (51)

where the solution of the homogeneous equation is given by
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and C
1

and C
2

are arbitrary constants. Since equation (50) is linear, the
superposition principle applies and the particular solution can be formed as a sum
of particular solutions. It is easy to verify that
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One of the constants (for example, C
2
) can be found from the boundary

condition (19)
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and :1
0

v
1
dsN can be obtained by integrating equation (51)
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We can now "nd the "rst order approximation to the eigenvalues K
1

by using the
boundary conditions (18). This takes the form
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Substituting the expressions for C
2

and :1
0

v
1
dsN into equation (56) and utilising

equation (34) yields
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The solution can be continued to a higher order in a similar fashion.
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4. NUMERICAL EXAMPLES AND DISCUSSION

In this section, several numerical examples are calculated using a complete model
of beam vibration (1), (2) in order to compare them with analytic solutions derived
in Section 3 and validate the predictions of the theory regarding the mode
transition phenomenon. The numerical results are obtained using a collocation
software for boundary-value ODEs &&Colnew'' [14].

In Figure 1, the numerical solution for non-dimensional eigenvalues versus
non-dimensional curvatures for the lowest two symmetrical modes of a beam with
constant curvature is shown with solid lines. The asymptote given by equation (37)
and the non-dimensional eigenvalues of the lowest two symmetric modes of a
straight beam are shown by dotted lines. One can see that, as shown analytically in
Section 3, with increase in non-dimensional curvature the eigenvalue increases and
approaches the asymptote, which is lower than the eigenvalue of the next higher
straight-beam mode with the same symmetry.
Figure 1. Non-dimensional eigenvalue K of two lowest symmetric modes (**) as a function of
non-dimensional curvature for a beam with constant curvature, e"10~6; asymptote de"ned by
equations (37) and eigenvalues of a straight beam are shown with dotted lines.
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Figures 2 and 3 show the numerical solution (solid lines) and zeroth order
approximations (dashed lines) for the eigenvalues of the lowest two modes of the
beams with constant and anti-symmetric linear curvature respectively (symmetric
modes are shown in the case of a beam with constant curvature and anti-symmetric
modes in the other case). One can see that the zeroth order approximation gives
an accurate description of the eigenvalue for the entire transition stage for beams
with a thickness to length ratio of 5]10~3 and smaller. Transformations of the
mode shape are also shown in these "gures. We can see that, as predicted, the mode
gradually transforms from the #exural mode of a straight beam into the one that
resembles the next higher #exural mode (with the same symmetry) of a straight
Figure 2. Numerical solution (**) and zeroth order analytic approximation ( } } } }) for the
non-dimensional eigenvalue K versus non-dimensional curvature parameter bM (in this case bM "iN ) for
the lowest two symmetric modes of a beam with constant curvature; e"10~6. Mode shapes at
progressively increasing curvature (corresponding to the marked points) are also shown.



Figure 3. Numerical solution (**) and zeroth order analytic approximation (} } } }) to the
non-dimensional eigenvalue K versus non-dimensional curvature parameter bM (in this case bM "iN ) for
the lowest two symmetric modes of a beam with antisymmetric linear curvature; e"10~7. Mode
shapes corresponding to the marked points are also shown in the plot.
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beam. The mode shape during the transition stage gains an additional compon-
ent which is proportional to the beam curvature function (this component is
a constant for a beam with constant curvature and is an antisymmetric linear
function for a beam with antisymmetric linear curvature). We also can see that, as
predicted analytically in Section 3, this additional component remains in the mode
shape even after the completion of the mode transition, when the vibration is
converted into a nearly inextensional one.

The similarity and distinctions between the low and high mode-number
transition are summarized in Table 1.

To illustrate the validity of the zeroth order approximation for thicker beams, it
is convenient to plot the non-dimensional eigenvalue K versus the scaled
non-dimensional curvature parameter bK (Figure 4). It can be seen that zeroth order



TABLE 1

Similarities and distinctions between high and low mode-number vibrational behaviour

High mode-number transition Low mode-number transition

Similar features

1. Transition from a #exural mode of a straight beam through the extensional stage into an
inextensional mode

2. Composite structure of mode shape during the transition stage

Distinctions

1. At the end of the transition stage, the eigenvalue increases to

the eigenvalue of the next mode (with the
same symmetry) of a straight beam K

the asymptotic limit that is lower than the
eigenvalue of the next mode (with the same
symmetry) of a straight beam

2. Additional component that appears in the transverse displacement during the transition
stage

is the solution of membrane vibration
problem K

is proportional to the beam curvature (for
curvature functions represented by
polynomial up to third degree)

3. At the end of the transition stage, the mode shape

is similar to the one of the next higher mode
of a straight beam K contains an additional component which is

a function of beam curvature
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approximation is adequate for part of the transition stage even for relatively thick
beams. However, the completion of the transition stage cannot be described by the
zeroth order approximation and a higher order approximation is required.

A comparison of the "rst order approximation with an exact numerical solution
of equations (1) and (2) for beams with uniform curvature is shown in Figure 5 for
several values of the slenderness parameter e. Clearly, the "rst order approximation
adequately describes the frequency throughout the transition stage for much
thicker beams (with thickness to length ratio up to 5]10~2). Higher order
approximations are required to describe the frequency throughout the whole
transition stage for even thicker beams. The "rst order approximation also reveals
that, after the mode transition stage which is accompanied by an increase
in frequency, a stage follows in which the frequency decreases. This stage, as well
as the vibrational behaviour of beams with arbitrarily large curvature, will be
investigated in a separate paper [12].

5. PHYSICAL INTERPRETATION

It is helpful to have a physical interpretation of the results of our analytical
calculations, and particularly of the mode transitions and other features shown in



Figure 4. Zeroth order approximation (**) and numerical solution (} } } }) for the lowest
symmetric mode of a beam with constant curvature plotted as functions of bK "iL "ile~1@2 ; 1: e"10~4,
2: e"10~5, 3: e"10~6.
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the "gures. To do this we use a rather di!erent notation from that in the rest of the
paper, but point out the connections.

In the "rst place, we note once again that, provided the curvature function is
either symmetric or antisymmetric about the mid-point of the beam, the mode
functions divide into two classes of odd and even symmetry respectively. There is
no interactions between the two classes, and they can be treated separately. For
clarity, therefore, we con"ne our attention to the case of constant (symmetric)
curvature, and discuss other cases later. The aim is to examine the changes in the
mode function and mode frequencies as the curvature is gradually increased from
zero. In particular, we shall use the Rayleigh}Ritz vibrational approach [13] to
determine the behaviour of the lowest symmetric mode, and then show how this
treatment can be extended to other modes.

The Rayleigh}Ritz method involves expressing a trial mode function as a series
of orthogonal functions with the coe$cients as variational parameters, and shows
that the energy derived using such trial function is always greater than or equal to



Figure 5. Numerical solution (**) and "rst order approximation (} } } }) for non-dimensional
eigenvalue K versus non-dimensional curvature parameter bM (bM "iN "il ) for the lowest symmetric
mode of a beam with constant curvature; 1: e"10~4, 2: e"10~5, 3: e"10~6.

86 T. TARNOPOLSKAYA E¹ A¸.
the exact mode energy. Suppose that v0
n
(s) are the normalized mode functions for

transverse displacements of a clamped straight beam. Then, since these form
a complete orthonormal set, the transverse mode functions v

n
for the curved beam

can be expressed in terms of them. In general, we should choose a similar set of
orthogonal functions to represent the longitudinal displacements but, for the
low-frequency modes of a thin beam, as considered here, it is valid to make the
approximation that the tension is constant along the beam. The tangential
displacement u

n
for the transverse mode n is therefore uniquely determined in terms

of the associated transverse displacement v
n
and the curvature function i, which in

this case is constant. Our initial aim is to examine the behaviour of the lowest
symmetric mode as a function of curvature.

For small oscillations of a curved beam, we know that the time-averaged kinetic
energy is equal to the time-averaged potential energy for the whole beam. The
kinetic energy can be separated into two parts, ¹

T
and ¹

L
respectively,
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corresponding to transverse and longitudinal motion. The potential energy can be
similarly divided into the strain energy of bending, <

B
, and the strain energy of

extension, <
E
. The energy equality for a mode (u, v) of the curved beam can

therefore be written symbolically in the form ¹
T
#¹

L
"<

B
#<

E
, from which we

can derive the mode frequency u as

u2"
: (vL

B
v#uL

E
u )ds

m: (v2#u2 )ds
, (58)

where L
B

and L
E

are linear di!erential operators that give the bending and
extensional forces, respectively, when operating on a mode functions, and m is the
mass of the beam. By the Rayleigh}Ritz principle [13], the frequency calculated
from (58) for any trial transverse mode function v(s) and its associated longitudinal
function u (s) will be greater than or equal to the true ground-state frequency. The
frequency u of the lowest mode can therefore be estimated by varying
the coe$cients that express the trial transverse mode function v (s) in terms of the
straight-beam function v0

n
(s) so as to minimize u.

If we choose v"v0
1

as the trial function, then geometry, and the condition of
constant tension, dictate a longitudinal function u, the magnitude of which is
proportional to the scaled curvature i6 "il and also proportional to the magnitude
of v. For small curvature, u@v and so can be neglected in the denominator of
equation (58), but the extensional energy term is signi"cant and must be retained in
the numerator. This leads to a result of the from

u2"u2
1
#aiN 2, (59)

where a is a constant and u
1

is the "rst-mode frequency for a straight beam.
Expression (59) then represents an upper bound to the true ground-state frequency,
and is actually close to the true picture, as shown by the initial frequency rise in
Figure 2.

For a larger uniform curvature, the variational approach is used and an
admixture of higher modes v0

n
with n'1 must be considered. Suppose the sign of

all the unperturbed symmetric mode functions is chosen so that they cause a net
tension in the curved beam. Then, from the odd number of half-wavelengths in the
unperturbed functions, we can see that this extension varies approximately as 1/n,
where n is the mode number. It therefore makes sense to try a variational function
of the form v"Av0

1
#Bv0

3
where mode 3 is the second straight-beam symmetrical

mode with frequency u
3

and A and B are variational coe$cients. If B is chosen so
that B+!3A, then the net extension for the variational function will be zero and,
from equation (58), the frequency of the perturbed mode will be given by

u2+
A2u2

1
#B2u2

3
A2#B2

+u2
1
#

9(u2
3
!u2

1
)

10
. (60)

In this limit, therefore, there has been a modi"cation to mode 1 by addition of
a large amount of next symmetric mode 3, and the mode frequency has shifted to
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a little below that of mode 3. In a proper variational calculation, the possibility
of admixtures of higher modes would be considered, but the mode 3 addition
will dominate because of the bending-energy penalty associated with higher
modes.

In accord with the Rayleigh}Ritz principle, the true ground-state frequency lies
below the two curves given by equation (59) and (60). There is, of course, a smooth
transition between these two cases, as is shown in Figure 2.

This approach can be extended to higher symmetric modes by eliminating the
modi"ed mode 1 function from the set of available variational functions by
imposing an appropriate condition on the "rst two expansion coe$cients so as to
ensure orthogonality of the new variational function to the ground-state function.
The squared frequency of mode 3 then initially rises quadratically with curvature,
as for mode 1, and settles down at a value a little below u

5
.

This approach can also be extended to symmetric curvatures other than those
that are constant, in which case there will still be a frequency increase followed by
mode mixing, but the quantitative details may be very di!erent.

When antisymmetric modes are considered in the symmetric-curvature case, it is
clear that they produce no nett extension. This means that the frequencies of such
modes are una!ected by curvature, and the mode-mixing phenomenon does not
occur. Exactly the opposite situation pertains when the beam curvature is
antisymmetric: in that case, antisymmetric modes su!er frequency increase
followed by mode mixing, as shown in Figure 3, while symmetric modes are
una!ected by curvature. If the curvature is neither symmetric nor antisymmetric,
then all modes increase in frequency as the curvature is increased, and for larger
curvature there is mode mixings between all modes, and not just those of the same
symmetry type.

Figure 5 shows a further feature of the behaviour, in that the rate at which the
frequency rises with curvature depends upon the thickness parameter e, thicker
beams changing frequency less than thinner beams. The reason for this is
immediately apparent from equation (58), for the elastic energy of bending<

B
varies

as e2v2 while the elastic energy of extension varies as eu2 or eiN 2v2. This means that
the parameter determining the initial e!ect of curvature on the mode frequency is
i6 2/e, so that the initial e!ect of curvature i6 scales as e1@2. This conclusion is in good
agreement with the initial parts of the plots in Figure 5, and indeed the initial parts
of all plots coincide if the horizontal axis is scaled in terms of i( , as in Figure 4,
rather than i6 . This change, however, destroys the overlap of the plots at higher
curvatures.

From Figure 5, it is also clear that a new phenomenon enters when the curvature
becomes larger, for the frequencies of all modes then begin to decline. This is
also easily understood in terms of the discussion above. In the "rst place, the
discussion has neglected the contribution of the longitudinal motion u to the kinetic
energy in equation (58). This neglect is justi"ed when iN @1, since u is of order
i6 v/(n#2) for the transformed mode n, but ceases to be valid for greater curvatures.
When the kinetic energy associated with longitudinal motion is included in the
calculation, it reduces the predicted frequency correspondingly. The predicted
result is that, instead of u reaching a plateau just below u

n`2
, it will become
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asymptotic to the curve

u2+
(n#2)2u2

n`2
(n#2)2#iN 2

(61)

for large i6 . At a given value of scaled curvature i6 , the relative e!ect on mode
frequency is independent of the thickness parameter e, though the e!ect of this on
the frequency curves must be interpreted in the light of the discussion in the
previous paragraph. This agrees with the behaviour shown in Figure 5. This
decrease in mode frequency at larger curvatures occurs independently of the
symmetries of the modes or of the curvature function. It is discussed in more detail
in another paper [12].

6. CONCLUSIONS

Analysis of the low-frequency free in-plane vibration of beams with arbitrarily
varying curvature and cross-section and clamped ends reveals that, depending on
the type of symmetry of the beam curvature and cross-section, with increase in
non-dimensional curvature i6 (where i6 "il ) some modes undergo a transition
from the #exural mode of a straight beam, through an extensional stage, into
a nearly inextensional mode that resembles the next higher #exural mode (with the
same symmetry) of a straight beam.

The main results of the paper can be summarized as follows:

1. A simple integral condition which shows which modes undergo a transition
for a particular type of beam curvature and cross-section is obtained.

2. Many features of the low-frequency mode transition are revealed analytically.
This includes the e!ect of beam curvature on mode shape during the
transition stage and an expression for the asymptotic limit for frequency at the
end of the transition stage.

3. The analysis reveals that although there is similarity between the low mode-
number transition and high mode-number transition examined in a previous
paper by the present authors [11], there are also signi"cant distinctions
between them. The similarities and distinctions are presented in Table 1.

4. Analytic approximations (zeroth order) for frequency and mode shape have
been derived for the cases of beam curvature represented by symmetric and
antisymmetric polynomial functions. The approximations describe su$ciently
accurately the entire transition stage for relatively thin beams (with thickness
to length ratio of 5]10~3 and smaller).

5. A higher order analytic approximation that describes the vibrational behaviour
in the transition region for much thicker beams has been derived using the case of
a uniformly curved beam as example. This approximation shows that, after the
initial mode transition stage which is accompanied by an increase in frequency,
a stage of decrease in frequency follows. This stage as well as vibrational
behaviour at arbitrarily large curvature will be discussed in a separate paper [12].

The properties of beam vibrational behaviour found by analytical study are
con"rmed by two numerical examples.
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Although for the sake of simplicity the analysis has been con"ned to beams with
clamped ends and with curvature function represented by symmetric or
antisymmetric polynomials up to third degree, it is straightforward to extend it to
the beams with hinged ends and to some other types of curvature functions.
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