Showing posts with label laterite. Show all posts
Showing posts with label laterite. Show all posts

Saturday, July 27, 2019

Konkan Road Trip Photos: Murud Dabhol Tural

Last week beginning Monday July 15th, I took a four day road trip to Konkan, India west coastal plains. We went first to the small village of Murud and then drove south via Dabhol to Tural highlands.

The phrase 'coastal plains' is something of a misnomer since between the high Western Ghats and the Arabian Sea there are hill ranges with altitudes reaching 50 m to 200 m ASL. Tural is a community living on one of these ranges. We stayed there in the family home of a friend.

The map below shows a portion of the Konkan region through which we traveled.


The region had come alive due to the monsoons, although that week we caught a small break in the rains. It did rain heavily in short bursts, but there were enough interludes to go for long walks and enjoy the sun too.

Some pictures of landscapes that we came across.

1) The coast near Murud. After a brutal summer, the feel of cool winds and sounds of monsoon waves crashing on the shore was very refreshing.


2) Lonely stretch of a shimmering beach near Murud.


3) Loading our car on to the ferry at Dabhol.


4) Colourful fishing boats at Dabhol jetty.


5) Continental erosion writ in mud! River Vashishti meets the Arabian Sea.


6) Rice fields in a quiet community in Tural highlands.


7) Tural highlands is capped by a flat surface.


8) This plateau cap is made up of iron rich laterite. It formed during late Miocene times (~10 million  years ago) by prolonged chemical weathering of the underlying basalt rock and pediment (layer of weathered rock debris) . The picture shows the hard laterite surface, which would have been a low lying peneplain in late Miocene times.


9) Subsequent to lateritization, the western margin (Konkan coastal region) underwent some uplift, resulting in the formation of a plateau or 'table land' as it is commonly called. As the land rose, invigorated streams cut into the laterite surface forming deeply entrenched channels.  The picture below shows a close up of the laterite plateau dissected by a dendritic stream network (blue arrows).


10) The evolution of the Konkan coastal region from a low lying undulating surface undergoing lateritization, to an uplifted and dissected plateau is depicted in the schematic below.


Source: Evolution of Laterite in Goa: Mike Widdowson  2009

11) The laterite is a commonly used building material in this region. Small quarries pockmark these highlands. The picture shows large bricks of laterite. The plateau cap is hard laterite that can't be cut into regular brick shaped pieces. Below this crust though is a softer iron rich soil. This semi indurated material is cut into brick shapes and left to dry. It hardens upon dehydration into a usable stone.


12) We took long walks in cool lush forest patches.


13) Deep in the forest we visited my friend's family temple, a hidden jewel with a spring fed bath. These temples act like a social glue, bringing families and communities together on religious and other occasions.


14) On the way back via Kumbharli Ghat we caught sight of the majestic Western Ghat Escarpment.
 

until next time! 

Wednesday, April 19, 2017

Evolution Of The Konkan-Kanara Coastal Plain

The Konkan coastal plains is a beautiful getaway from west coast city life. Palm fringed beaches, quiet rivers and estuaries, betel nut plantations and forest tracts. Small villages and settlements dot the landscape. To the east, the coastal plains abut against the imposing Western Ghat escarpment.

How did this coastal plain of Maharashtra form? (Kanara refers to the stretch south of Maharashtra in the state of Karnataka).  I came across a paper by Mike Widdowson on the evolution of laterite in Goa. It also has a broader discussion on the conditions that led to the formation of geomorphology of the coastal lowlands extending all along the west coast of India.

Here it is summarized nicely in this figure below:


Source: Evolution of Laterite in Goa: Mike Widdowson  2009

After Deccan Volcanism ended, rifting of the Indian west coast and down faulting of the western side led to the formation of a west facing fault scarp. Erosion of this scarp over the early mid Cenozoic (from about 60 million years ago) has caused it to retreat eastwards. The Western Ghat escarpment is this retreated scarpThe coastal plain formed as an erosional surface that became broader and broader with the progressive eastward retreat of this cliff to the current location. The fault which caused the western side to subside thus lies in the Arabian Sea along the west coast.

In Mid-Late Miocene (~10 million years ago), a phase of humid climate resulted in intense chemical weathering of the basalts and pediment (rock debris) exposed along the coastal plains. This alteration of the basalts formed thick iron rich soils. The reddened and indurated crust of this soil is commonly termed laterite. In the Western coastal lowlands this laterite may be a few meters thick.

Subsequent uplift of the west coast and concomitant down cutting by west flowing rivers formed a dissected landscape composed of laterite capped mesas (table lands) and entrenched meandering streams. These mesas reach altitudes of 150-200 m in the eastern parts of the coastal plain. Nearer the coast they are about 50 -100 m above sea level. 

The western margin of India has seen multiple episodes of extensive laterite formation. The famous table lands of the hill stations of Panchgani and Mahabaleshwar are also made up of laterite. They occur at altitudes of around 1200 m to 1500 m.  However, this upland or high altitude laterite is much older, having formed about 60- 50 million years ago in the early Cenozoic, soon after Deccan volcanism ended. The Konkan and Goa lowland laterites point to another younger phase of laterization. Sheila Mishra and colleagues have identified two more surfaces in the Deccan Traps at 650 m ASL and 850 m ASL that preserve remnants of laterite cover. This suggests a complex polyphase history of denudation and chemical weathering and tectonic stability of the Sahaydri ranges of the Western Ghats.

The sea cliffs that one encounters as you travel along the Konkan and Goa coastline are a result of a late Cenozoic uplift. I remember with fondness a trek I did during my college days from the town of Ratnagiri south to the town of Malvan. There were absolutely majestic sections where we walked on the edge of laterite capped sea cliffs with the Arabian Sea heaving and thundering below us. Little coves and beaches of sparkling white sand lay between the cliffs. Here and there local fisherman had kept their fish catch to dry out in the sun. The pungent smell urged us on!

The satellite imagery below shows a section of the coastal plains from Ratnagiri in the north to Devgarh in the south. White arrows point to the laterite capped table lands dissected by stream networks. Orange arrows point to sea cliffs. Black arrows shows the Western Ghat escarpment.



This is a very interesting paper. Open Access.