For more information on Lise Meitner, visit Britannica.com.
On this page
Britannica Concise Encyclopedia:
Lise Meitner |
For more information on Lise Meitner, visit Britannica.com.
Featured Videos:
|
Houghton Mifflin Guide to Science & Technology:
Lise Meitner |
![]() | Lise Meitner |
Library of Congress |
[b. Vienna, Austria, November 7, 1878, d. Cambridge, England, October 27, 1968]
Meitner collaborated with Otto Hahn in Germany from 1906 through 1938. Together they found the first long-lived isotope of protactinium, establishing it as a new element. They also produced uranium fission, but Hahn failed to recognize that uranium atoms were splitting. In 1939 Meitner, in exile from Germany because of her Jewish heritage, worked out the correct explanation in collaboration with her similarly exiled nephew Otto Frisch, who named the process nuclear fission.
Gale Encyclopedia of Biography:
Lise Meitner |
Lise Meitner (1878-1968) helped to develop the theory behind nuclear fission, and became the first woman professor in Germany.
The prototypical female scientist of the early twentieth century was a woman devoted to her work, sacrificing family and personal relationships in favor of science; modestly brilliant; generous; and underrecognized. In many ways Austrian-born physicist Lise Meitner embodies that image. In 1938, along with her nephew Otto Robert Frisch, Meitner developed the theory behind nuclear fission that would eventually make possible the creation of the atomic bomb. She and lifelong collaborator Otto Hahn made several other key contributions to the field of nuclear physics. Although Hahn received the Nobel Prize in 1944, Meitner did not share the honor - one of the more frequently cited examples of the sexism rife in the scientific community in the first half of this century.
Elise Meitner was born November 7, 1878 to an affluent Vienna family. Her father Philipp was a lawyer and her mother Hedwig travelled in the same Vienna intellectual circles as Sigmund Freud. From the early years of her life, Meitner gained experience that would later be invaluable in combatting - or overlooking - the slights she received as a woman in a field dominated by men. The third of eight children, she expressed interest in pursuing a scientific career, but her practical father made her attend the Elevated High School for Girls in Vienna to earn a diploma that would enable her to teach French - a much more sensible career for a woman. After completing this program, Meitner's desire to become a scientist was greater than ever. In 1899, she began studying with a local tutor who prepped students for the difficult university entrance exam. She worked so hard that she successfully prepared for the test in two years rather than the average four. Shortly before she turned twenty three, Meitner became one of the few women students at the University of Vienna.
At the beginning of her university career in 1901, Meitner could not decide between physics or mathematics; later, inspired by her physics teacher Ludwig Boltzmann, she opted for the latter. In 1906, after becoming the second woman ever to earn a Ph.D. in physics from the University of Vienna, she decided to stay on in Boltzmann's laboratory as an assistant to his assistant. This was hardly a typical career path for a recent doctorate, but Meitner had no other offers, as universities at the time did not hire women faculty. Less than a year after Meitner entered the professor's lab, Boltzmann committed suicide, leaving the future of the research team uncertain. In an effort to recruit the noted physicist Max Planck to take Boltzmann's place, the university invited him to come visit the lab. Although Planck refused the offer, he met Meitner during the visit and talked with her about quantum physics and radiation research. Inspired by this conversation, Meitner left Vienna in the winter of 1907 to go to the Institute for Experimental Physics in Berlin to study with Planck.
Soon after her arrival in Berlin, Meitner met a young chemist named Otto Hahn at one of the weekly symposia. Hahn worked at Berlin's Chemical Institute under the supervision of Emil Fischer, surrounded by organic chemists - none of whom shared his research interests in radiochemistry. Four months older than Hahn, Meitner was not only intrigued by the same research problems but had the training in physics that Hahn lacked. Unfortunately, Hahn's supervisor balked at the idea of allowing a woman researcher to enter the all-male Chemical Institute. Finally, Fischer allowed Meitner and Hahn to set up a laboratory in a converted woodworking shop in the Institute's basement, as long as Meitner agreed never to enter the higher floors of the building.
This incident was neither the first nor the last experience of sexism that Meitner encountered in her career. According to one famous anecdote, she was solicited to write an article by an encyclopedia editor who had read an article she wrote on the physical aspects of radioactivity. When she answered the letter addressed to Herr Meitner and explained she was a woman, the editor wrote back to retract his request, saying he would never publish the work of a woman. Even in her collaboration with Hahn, Meitner at times conformed to gender roles. When British physicist Sir Ernest Rutherford visited their Berlin laboratory on his way back from the Nobel ceremonies in 1908, Meitner spent the day shopping with his wife Mary while the two men talked about their work.
Within her first year at the Institute, the school opened its classes to women, and Meitner was allowed to roam the building. For the most part, however, the early days of the collaboration between Hahn and Meitner were filled with their investigations into the behavior of beta rays as they passed through aluminum. By today's standards, the laboratory in which they worked would be appalling. Hahn and Meitner frequently suffered from headaches brought on by their adverse working conditions. In 1912 when the Kaiser-Wilhelm Institute was built in the nearby suburb of Dahlem, Hahn received an appointment in the small radioactivity department there and invited Meitner to join him in his laboratory. Soon thereafter, Planck asked Meitner to lecture as an assistant professor at the Institute for Theoretical Physics. The first woman in Germany to hold such a position, Meitner drew several members of the news media to her opening lecture.
When World War I started in 1914, Meitner interrupted her laboratory work to volunteer as an X-ray technician in the Austrian army. Hahn entered the German military. The two scientists arranged their leaves to coincide and throughout the war returned periodically to Dahlem where they continued trying to discover the precursor of the element actinium. By the end of the war, they announced that they had found this elusive element and named it protactinium, the missing link on the periodic table between thorium (previously number 90) and uranium (number 91). A few years later Meitner received the Leibniz Medal from the Berlin Academic of Science and the Leibniz Prize from the Austrian Academy of Science for this work. Shortly after she helped discover protactinium in 1917, Meitner accepted the job of establishing a radioactive physics department at the Kaiser Wilhelm Institute. Hahn remained in the chemistry department, and the two ceased working together to concentrate on research more suited to their individual training. For Meitner, this constituted a return to beta radiation studies.
Throughout the 1920s, Meitner continued her work in beta radiation, winning several prizes. In 1928, the Association to Aid Women in Science upgraded its Ellen Richards Prize - billing it as a Nobel Prize for women - and named Meitner and chemist Pauline Ramart-Lucas of the University of Paris its first recipients. In addition to the awards she received, Meitner acquired a reputation in physics circles for some of her personal quirks as well. Years later, her nephew Otto Frisch, also a physicist, would recall that she drank large quantities of strong coffee, embarked on ten mile walks whenever she had free time, and would sometimes indulge in piano duets with him. By middle age, Meitner had also adopted some of the mannerisms stereotypically associated with her male colleagues. Not the least of these, Hahn later recalled, was absent-mindedness. On one occasion, a student approached her at a lecture, saying they had met earlier. Knowing she had never met the student, Meitner responded earnestly, "You probably mistake me for Professor Hahn."
Meitner and Hahn resumed their collaboration in 1934, after Enrico Fermi published his seminal article on "transuranic" uranium. The Italian physicist announced that when he bombarded uranium with neutrons, he produced two new elements - number 93 and 94, in a mixture of lighter elements. Meitner and Hahn joined with a young German chemist named Fritz Strassmann to draw up a list of all the substances the heaviest natural elements produced when bombarded with neutrons. In three years, the three confirmed Fermi's result and expanded the list to include about ten additional substances that resulted from bombarding these elements with neutrons. Meanwhile, physicists Irène Joliot-Curie and Pavle Savitch announced that they had created a new radioactive substance by bombarding uranium by neutrons. The French team speculated that this new mysterious substance might be thorium, but Meitner, Hahn, and Strassmann could not confirm this finding. No matter how many times they bombarded uranium with neutrons, no thorium resulted. Hahn and Meitner sent a private letter to the French physicists suggesting that perhaps they had erred. Although Joliot-Curie did not reply directly, a few months later she published a paper retracting her earlier assertions and said the substance she had noted was not thorium.
Current events soon took Meitner's mind off these professional squabbles. Although her father, a proponent of cultural assimilation, had all his children baptized, Meitner was Jewish by birth. Because she continued to maintain her Austrian citizenship, she was at first relatively impervious to the political turmoil in Weimar Germany. In the mid-1930s she had been asked to stop lecturing at the university but she continued her research. When Germany annexed Austria in 1938, Meitner became a German citizen and began to look for a research position in an environment hospitable to Jews. Her tentative plans grew urgent in the spring of 1938, when Germany announced that academics could no longer leave the country. Colleagues devised an elaborate scheme to smuggle her out of Germany to Stockholm where she had made temporary arrangements to work at the Institute of the Academy of Sciences under the sponsorship of a Nobel grant. By late fall, however, Meitner's position in Sweden looked dubious: her grant provided no money for equipment and assistance, and the administration at the Stockholm Institute would offer her no help. Christmas found her depressed and vacationing in a town in the west of Sweden.
Back in Germany, Hahn and Strassmann had not let their colleague's departure slow their research efforts. The two read and reread the paper Joliot-Curie had published detailing her research techniques. Looking it over, they thought they had found an explanation for Joliot-Curie's confusion: perhaps instead of finding one new substance after bombarding uranium, as she had thought, she had actually found two new substances! They repeated her experiments and indeed found two substances in the final mixture, one of which was barium. This result seemed to suggest that bombarding uranium with neutrons led it to split up into a number of smaller elements. Hahn immediately wrote to Meitner to share this perplexing development with her. Meitner received his letter on her vacation in the village of Kungalv, as she awaited the arrival of her nephew, Frisch, who was currently working in Copenhagen under the direction of physicist Niels Bohr. Frisch hoped to discuss a problem in his own work with Meitner, but it was clear soon after they met that the only thing on her mind was Hahn and Strassmann's observation. Meitner and Frisch set off for a walk in the snowy woods - Frisch on skis, with his aunt trotting along - continuing to puzzle out how uranium could possibly yield barium. When they paused for a rest on a log, Meitner began to posit a theory, sketching diagrams in the snow.
If, as Bohr had previously suggested, the nucleus behaved like a liquid drop, Meitner reasoned that when this drop of a nucleus was bombarded by neutrons, it might elongate and divide itself into two smaller droplets. The forces of electrical repulsion would act to prevent it from maintaining its circular shape by forming the nucleus into a dumbbell shape that would - as the bombarding forces grew stronger - sever at the middle to yield two droplets - two completely different nuclei. But one problem still remained. When Meitner added together the weights of the resultant products, she found that the sum did not equal the weight of the original uranium. The only place the missing mass could be lost was in energy expended during the reaction.
Frisch rushed back to Copenhagen, eager to test the revelations from their walk in the woods on his mentor and boss, Bohr. He caught Bohr just as the scientist was leaving for an American tour, but as Bohr listened to what Frisch was urgently telling him, he responded: "Oh, what idiots we have been. We could have foreseen it all! This is just as it must be!" Buoyed by Bohr's obvious admiration, Frisch and Meitner spent hours on a long-distance telephone writing the paper that would publicize their theory. At the suggestion of a biologist friend, Frisch coined the word "fission" to describe the splitting of the nucleus in a process that seemed to him analogous to cell division.
The paper "On the Products of the Fission of Uranium and Thorium" appeared in Nature on February 11, 1939. Although it would be another five and a half years before the American military would successfully explode an atom bomb over Hiroshima, many physicists consider Meitner and Frisch's paper akin to opening a Pandora's box of atomic weapons. Physicists were not the only ones to view Meitner as an important participant in the harnessing of nuclear energy. After the bomb was dropped in 1944, a radio station asked First Lady Eleanor Roosevelt to conduct a transatlantic interview with Meitner. In this interview, the two women talked extensively about the implications and future of nuclear energy. After the war, Hahn found himself in one of the more enviable positions for a scientist - the winner of the 1944 Nobel prize in chemistry - although, because of the war, Hahn did not accept his prize until two years later. Although she attended the ceremony, Meitner did not share in the honor.
But Meitner's life after the war was not without its plaudits and pleasures. In the early part of 1946, she travelled to America to visit her sister - working in the U.S. as a chemist - for the first time in decades. While there, Meitner delivered a lecture series at Catholic University in Washington, D.C. In the following years, she won the Max Planck Medal and was awarded numerous honorary degrees from both American and European universities. In 1966 she, Hahn, and Strassmann split the $50,000 Enrico Fermi Award given by the Atomic Energy Commission. Unfortunately, by this time Meitner had become too ill to travel, so the chairman of the A. E. C. delivered it to her in Cambridge, England, where she had retired a few years earlier. Meitner died just a few weeks before her 90th birthday on October 27, 1968.
Further Reading
Crawford, Deborah, Lise Meitner, Atomic Pioneer, Crown, 1969.
Irving, David, The German Atomic Bomb: The History of Nuclear Research in Nazi Germany, Simon & Schuster, 1967.
Rhodes, Richard, The Making of the Atom Bomb, Simon & Schuster, 1988.
Watkins, Sallie, "Lise Meitner and the Beta-ray Energy Controversy: An Historical Perspective," in American Journal of Physics, Volume 51, 1983, pp. 551-553.
Watkins, Sallie, "Lise Meitner: The Making of a Physicist," in Physics Teacher, January, 1984, pp. 12-15.
Columbia Encyclopedia:
Lise Meitner |
Bibliography
See biography by R. L. Sime (1996); P. Rife, Lise Meitner and the Dawn of the Nuclear Age (1997).
Wikipedia on Answers.com:
Lise Meitner |
Lise Meitner | |
---|---|
![]() Lise Meitner in 1946 |
|
Born | 7 November 1878 Vienna, Austria-Hungary |
Died | 27 October 1968 Cambridge, England |
(aged 89)
Residence | Austria, Germany, Sweden United Kingdom |
Citizenship | Austro-Hungarian (pre 1919), Austria (pre-1949), Sweden (post-1949) |
Fields | Physics |
Institutions | Kaiser Wilhelm Institute University of Berlin |
Alma mater | University of Vienna |
Doctoral advisor | Ludwig Boltzmann |
Other academic advisors | Max Planck |
Doctoral students | Arnold Flammersfeld Kan-Chang Wang Nikolaus Riehl |
Other notable students | Max Delbrück Hans Hellmann |
Known for | Nuclear fission |
Influenced | Otto Hahn |
Notable awards | Lieben Prize (1925) Max Planck Medal (1949) Enrico Fermi Award (1966) |
Signature![]() |
|
Lise Meitner, FRS[1] (7 November 1878 – 27 October 1968) was an Austrian, later Swedish, physicist who worked on radioactivity and nuclear physics.[2] Meitner was part of the team that discovered nuclear fission, an achievement for which her colleague Otto Hahn was awarded the Nobel Prize. Meitner is often mentioned as one of the most glaring examples of women's scientific achievement overlooked by the Nobel committee.[3][4][5] A 1997 Physics Today study concluded that Meitner's omission was "a rare instance in which personal negative opinions apparently led to the exclusion of a deserving scientist" from the Nobel.[6] Element 109, Meitnerium, is named in her honour.[7][8][9]
Contents
|
Meitner was born into a Jewish family as the third of eight children in Vienna, 2nd district (Leopoldstadt). Her father, Philipp Meitner,[10] was one of the first Jewish lawyers in Austria.[5] She was born on 7 November 1878. She shortened her name from Elise to Lise.[11][12] The birth register of Vienna's Jewish community lists Meitner as being born on 17 November 1878, but all other documents list it as 7 November, which is what she used.[13] As an adult, she converted to Christianity, following Lutheranism,[13][14] and being baptized in 1908.[15]
Inspired by her teacher, physicist Ludwig Boltzmann, Meitner studied physics and became the second woman to obtain a doctoral degree in physics at the University of Vienna in 1905 ("Wärmeleitung im inhomogenen Körper").[5] Women were not allowed to attend institutions of higher education in those days, but thanks to support from her parents, she was able to obtain private higher education, which she completed in 1901 with an "externe Matura" examination at the Akademisches Gymnasium. Following the doctoral degree, she rejected an offer to work in a gas lamp factory. Encouraged by her father and backed by his financial support, she went to Berlin. Max Planck allowed her to attend his lectures, an unusual gesture by Planck, who until then had rejected any women wanting to attend his lectures. After one year, Meitner became Planck's assistant. During the first years she worked together with chemist Otto Hahn and discovered with him several new isotopes. In 1909 she presented two papers on beta-radiation.
In 1912 the research group Hahn-Meitner moved to the newly founded Kaiser-Wilhelm-Institut (KWI) in Berlin-Dahlem, south west in Berlin. She worked without salary as a "guest" in Hahn's department of Radiochemistry. It was not until 1913, at 35 years old and following an offer to go to Prague as associate professor, that she got a permanent position at KWI.
In the first part of World War I, she served as a nurse handling X-ray equipment. She returned to Berlin and her research in 1916, but not without inner struggle. She felt in a way ashamed of wanting to continue her research efforts when thinking about the pain and suffering of the victims of war and their medical and emotional needs.[16]
In 1917, she and Hahn discovered the first long-lived isotope of the element protactinium, for which she was awarded the Leibniz Medal by the Berlin Academy of Sciences. That year, Meitner was given her own physics section at the Kaiser Wilhelm Institute for Chemistry.[5]
In 1922, she discovered the cause, known as the Auger effect, of the emission from surfaces of electrons with 'signature' energies.[17] The effect is named for Pierre Victor Auger, a French scientist who independently discovered the effect in 1923.[18]
In 1926, Meitner became the first woman in Germany to assume a post of full professor in physics, at the University of Berlin. There she undertook the research program in nuclear physics which eventually led to her co-discovery of nuclear fission in 1939, after she had left Berlin. She was praised by Albert Einstein as the "German Marie Curie".[5][19][20]
In 1930, Meitner taught a seminar on nuclear physics and chemistry with Leó Szilárd. With the discovery of the neutron in the early 1930s, speculation arose in the scientific community that it might be possible to create elements heavier than uranium (atomic number 92) in the laboratory. A scientific race began between Ernest Rutherford in Britain, Irène Joliot-Curie in France, Enrico Fermi in Italy, and the Meitner-Hahn team in Berlin. At the time, all concerned believed that this was abstract research for the probable honour of a Nobel prize. None suspected that this research would culminate in nuclear weapons.
When Adolf Hitler came to power in 1933, Meitner was acting director of the Institute for Chemistry. Although she was protected by her Austrian citizenship, all other Jewish scientists, including her nephew Otto Frisch, Fritz Haber, Leó Szilárd and many other eminent figures, were dismissed or forced to resign from their posts. Most of them emigrated from Germany. Her response was to say nothing and bury herself in her work; she later acknowledged, in 1946, that "It was not only stupid but also very wrong that I did not leave at once."[21]
After the Anschluss, her situation became desperate. In July 1938, Meitner, with help from the Dutch physicists Dirk Coster and Adriaan Fokker, escaped to the Netherlands. She was forced to travel under cover to the Dutch border, where Coster persuaded German immigration officers that she had permission to travel to the Netherlands. She reached safety, though without her possessions. Meitner later said that she left Germany forever with 10 marks in her purse. Before she left, Otto Hahn had given her a diamond ring he had inherited from his mother: this was to be used to bribe the frontier guards if required. It was not required, and Meitner's nephew's wife later wore it.
Meitner was lucky to escape, as Kurt Hess, a chemist who was an avid Nazi, had informed the authorities that she was about to flee. An appointment at the University of Groningen did not come through, and she went instead to Stockholm, where she took up a post at Manne Siegbahn's laboratory, despite the difficulty caused by Siegbahn's prejudice against women in science. Here she established a working relationship with Niels Bohr, who travelled regularly between Copenhagen and Stockholm. She continued to correspond with Hahn and other German scientists.[22]
Hahn and Meitner met privately in Copenhagen in November to plan a new round of experiments, and they subsequently exchanged a series of letters. Hahn and Fritz Strassmann then performed the difficult experiments which isolated the evidence for nuclear fission at his laboratory in Berlin. The surviving correspondence shows that Hahn recognized that fission was the only explanation for the barium, but, baffled by this remarkable conclusion, he wrote to Meitner. The possibility that uranium nuclei might break up under neutron bombardment had been suggested years before, notably by Ida Noddack in 1934. However, by employing the existing "liquid-drop" model of the nucleus,[23] Meitner and Frisch were the first to articulate a theory of how the nucleus of an atom could be split into smaller parts: uranium nuclei had split to form barium and krypton, accompanied by the ejection of several neutrons and a large amount of energy (the latter two products accounting for the loss in mass). She and Frisch had discovered the reason that no stable elements beyond uranium (in atomic number) existed naturally; the electrical repulsion of so many protons overcame the strong nuclear force.[23] Meitner also first realized that Einstein's famous equation, E = mc2, explained the source of the tremendous releases of energy in nuclear fission, by the conversion of rest mass into kinetic energy, popularly described as the conversion of mass into energy.
A letter from Bohr, commenting on the fact that the amount of energy released when he bombarded uranium atoms was far larger than had been predicted by calculations based on a non-fissile core, had sparked the above inspiration in December 1938. Hahn claimed that his chemistry had been solely responsible for the discovery, although he had been unable to explain the results.
It was politically impossible for the exiled Meitner to publish jointly with Hahn in 1939. Hahn and Strassman had sent the manuscript of their paper to Naturwissenschaften in December 1938, reporting they had detected the element barium after bombarding uranium with neutrons;[24] simultaneously, they had communicated their results to Meitner in a letter. Meitner, and her nephew Otto Frisch, correctly interpreted their results as being nuclear fission and published their paper in Nature.[25] Frisch confirmed this experimentally on 13 January 1939.[26]
Meitner recognized the possibility for a chain reaction of enormous explosive potential. This report had an electrifying effect on the scientific community. Because this could be used as a weapon, and since the knowledge was in German hands, Leó Szilárd, Edward Teller, and Eugene Wigner jumped into action, persuading Albert Einstein, a celebrity, to write President Franklin D. Roosevelt a letter of caution; this led eventually to the establishment several years later of the Manhattan Project. Meitner refused an offer to work on the project at Los Alamos, declaring "I will have nothing to do with a bomb!"[27] Meitner said that Hiroshima had come as a surprise to her, and that she was "sorry that the bomb had to be invented."[28]
In Sweden, Meitner was first active at Siegbahn's Nobel Institute for Physics, and at the Swedish Defence Research Establishment (FOA) and the Royal Institute of Technology in Stockholm, where she had a laboratory and participated in research on R1, Sweden's first nuclear reactor. In 1947, a personal position was created for Meitner at the University College of Stockholm with the salary of a professor and funding from the Council for Atomic Research.[29]
On 15 November 1945 the Royal Swedish Academy of Sciences announced that Hahn had been awarded the 1944 Nobel Prize in Chemistry for the discovery of nuclear fission.[30] Some historians who have documented the history of the discovery of nuclear fission believe Meitner should have been awarded the Nobel Prize with Hahn.[31][32][33]
In 1966 Hahn, Fritz Strassmann and Meitner together were awarded the Enrico Fermi Award. On a visit to the USA in 1946 she received the honour of the "Woman of the Year" by the National Press Club dinner with President Harry Truman and others at the National Women's Press Club (USA) in January 1946, as well as many honorary doctorates and lectured at Princeton, Harvard and other US universities. Lise Meitner refused to move back to Germany, and enjoyed retirement and research in Stockholm until her late 80s. She received the Max Planck Medal of the German Physics Society in 1949. Meitner was nominated to receive the prize three times. An even rarer honour was given to her in 1997 when element 109 was named meitnerium in her honour.[5][34][35] Named after Meitner were the Hahn-Meitner Institut in Berlin, craters on the Moon and on Venus, and a main-belt asteroid.
Meitner was elected a foreign member of the Royal Swedish Academy of Sciences in 1945, and had her status changed to that of a Swedish member in 1951.
After the war, Meitner, while acknowledging her own moral failing in staying in Germany from 1933 to 1938, was bitterly critical of Hahn and other German scientists who had collaborated with the Nazis and done nothing to protest against the crimes of Hitler's regime. Referring to the leading German scientist Werner Heisenberg, she said: "Heisenberg and many millions with him should be forced to see these camps and the martyred people." She wrote to Hahn:
You all worked for Nazi Germany. And you tried to offer only a passive resistance. Certainly, to buy off your conscience you helped here and there a persecuted person, but millions of innocent human beings were allowed to be murdered without any kind of protest being uttered ... [it is said that] first you betrayed your friends, then your children in that you let them stake their lives on a criminal war – and finally that you betrayed Germany itself, because when the war was already quite hopeless, you did not once arm yourselves against the senseless destruction of Germany.—[36]
Hahn however wrote in his memoirs that he and Meitner had been lifelong friends.[37]
Meitner became a Swedish citizen in 1949. She finally decided to retire in 1960 and then moved to the UK where most of her relatives were, although she continued working part time and giving lectures. A strenuous trip to the United States in 1964 led to Meitner having a heart attack, which she spent several months recovering from. Her physical and mental condition weakened by atherosclerosis, she was unable to travel to the US to receive the Enrico Fermi prize and relatives had to present it to her. After breaking her hip in a fall and suffering several small strokes in 1967, Meitner made a partial recovery, but eventually was weakened to the point where she moved into a Cambridge nursing home. She died on October 27 at the age of 89. Meitner was not informed of the deaths of Otto Hahn and his wife Edith, as her family believed it would be too much for someone as frail as her to handle. [2] As was her wish, she was buried in the village of Bramley in Hampshire, at St. James parish church, close to her younger brother Walter, who had died in 1964. Her nephew Otto Frisch composed the inscription on her headstone. It reads "Lise Meitner: a physicist who never lost her humanity."
![]() |
Wikimedia Commons has media related to: Lise Meitner |
This entry is from Wikipedia, the leading user-contributed encyclopedia. It may not have been reviewed by professional editors (see full disclaimer)
![]() | meitnerium |
![]() | Otto Hahn |
![]() | protactinium |
![]() | When Lise Meitner did Born? Read answer... |
![]() | What did Lise Meitner invent? Read answer... |
![]() | Where did Lise Meitner do her work? Read answer... |
![]() | Did lise meitner ever marry? |
![]() | Did lise meitner have weaknesses? |
![]() | Where did Lise Meitner work with? |
Copyrights:
![]() |
![]() | Britannica Concise Encyclopedia. Britannica Concise Encyclopedia. © 1994-2012 Encyclopædia Britannica, Inc. All rights reserved. Read more |
![]() |
![]() | Houghton Mifflin Guide to Science & Technology. History of Science and Technology, edited by Bryan Bunch and Alexander Hellemans. Copyright © 2004 by Houghton Mifflin Company. Published by Houghton Mifflin Company. All rights reserved. Read more |
![]() |
![]() | Gale Encyclopedia of Biography. Gale Encyclopedia of Biography. © 2006 by The Gale Group, Inc. All rights reserved. Read more |
![]() |
![]() | Columbia Encyclopedia. The Columbia Electronic Encyclopedia, Sixth Edition Copyright © 2012, Columbia University Press. Licensed from Columbia University Press. All rights reserved. www.cc.columbia.edu/cu/cup/. Read more |
![]() |
![]() | Wikipedia on Answers.com. This article is licensed under the Creative Commons Attribution/Share-Alike License. It uses material from the Wikipedia article Lise Meitner. Read more |
Mentioned in